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1. Introduction

This document records interim progress during the period 1 February 1985 through31 December
1985 since the last technical report. Contained in this report are three major design specifications for
the ArchOS decentralized operating system that is being built at CMU as part of the Archons project
with partial support from NOSC. Each design specification appears as a separate chapter in Section
It of this report. .

The Client Interface Specification in Chapter 4 of this report describes the functionality of ArchOS
as seen by client application programs. In Chapter 5, the ArchOS System Architecture Specification
summarizes the structure of ArchOS that supports the ArchOS client interface. Chapter 6 contains
the System Design Description of ArchOS. The System Design describes the structure and
functionality of major components of ArchQS, such as the ArchQOS kernel, the arobject/process
management subsystem, the communication subsystem, the transaction subsystem, the file )
subsystem, the 1/0 device subsystem, the time-driven scheduler subsystem, and the monitoring and
debugging subsystems.

This document does not report in detail on the current status and design of the Alpha kernel
software that will eventually support ArchOS in the Archons Testbed. A separate report devoted to
Alpha is currently being prepared and will be delivered shortly.




2. Summary

The goal of the Archons project is to conduct research into the issues of decentralization in
distributed computing systems at the operating system level and below. The primary research issues
being investigated within Archons are decentralized control, team and consensus decision making,
transaction management, probabilistic algorithms, and architectural support in a real-time
environment.

A major focus of research in Archons is the ArchOS decentralized operating system. ArchOS will
serve as the primary evidence that the theoretical ideas and practical implementation approaches
proposed by Archons actually perform satisfactorily. ArchOS consists of the ArchOS kernel,
subsystems, and system objects. The ArchOS kernel provides basic mechanisms for time-driven

resource management. The subsystems together with system objects establish ArchQOS facilities.
The primary resuits achieved by CMU's effort during 1985 are as follows:
e completion of the Client Interface Specification for ArchOS,
e completion of the System Architecture Specification for ArchOS,
e completion of the System Design Description for ArchQS, and

o successful implementation and testing of the initial version of the Alpha kernel.




3. Conclusions

Continued and steady progress is being achieved in developing the ArchOS decentréﬂized operating
system. The design documents produced to date, in conjunction with the kernel software actually
constructed, together represent a substantial step towards realization of a real-time decentralized
operating system based on objects and transactions. Further progress depends on a combination of
experimentation with concepts proposed in the design documentation and integration of kernel
software with higher level operating system software and resource management strategies. The
Archons project is incrementally achieving the objective of developing a decentralized operating
system that embodies novel concepts suitable for application in Navy real-time command and control
systems.
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4. Client Interface Specification

4.1 Overview

ArchQOS is the operating system being designed and constructed as part of the Archons research
project. The stated goals of the project are to conduct research into the issues of decentraiization in
distributed computing systems at the operating system level and below. In this area, the primary
research issues being investigated within Archons are decentralized control, team decision making,

transaction management, probabilistic algorithms, and architectural support.

it is planned that ArchOS will be developed in three stages. The first, called the interim testbed
version, is now underway and will handle a small set of Sun workstations' interconnected by an
Ethernet. It is expected that this operating system will constitute an existence proof of many of the
basic concepts involved in our research as applied to the construction of a decentralized operating
system. This system will later be followed by a more complete testbed operating system incorporating
the lessons jearned in the interim testbed construction. Finally, an analysis of the ArchQOS structure is
expected to result in the construction of specialized hardware for the purpose of executing a full-
blown ArchOS system, and ArchOS will be rewritten to run on it at that time.

In this document, we describe the characteristics of the interim testbed version of ArchOS currently
being designed. This system is intended to be a vehicle with which these issues can be investigated,
rather than an operational applications programming environinent. The cilient interface, then, must
be have sufficient functional completeness to allow test applications to be constructed with which to
study ArchOS' characteristics, but need not provide a particularly complete set of facilities. The set of
facilities provided, then, will be evaluated with respect to their support of Archons’ primary research
goals, rather than with respect to an operationally complete functionality.

Nevertheless, the set of functions described in this document can, and should, describe a sct of
facilities each of which is functionally closed: i.e. each function provided is complete so that its use
can be measured with respect to Archons’ research issues. Thus, for exampie, in the handling of
transactions at the client interface, all of the important issues in transaction management are
covered, even though other functions, such as file management, may be missing or skimmed. It is not
to be assumed that missing or incompliete functionality in the interim tesbed ArchCS represents

valueless functionality, but rather that the issues involved with such functions are not within the

1Sun Workstation is a trademark of SUN Microsystems, Iinc.




primary Archons research interests. Functionality in such areas is expected to be much more
complete in later versions of ArchOS incorporating the results of the research performed during this
early ArchOS implementation.

This document consists of four chapters. Following this introductory chapter, chapter two will
contaiﬁ a description of the computational rhodel of ArchOS. This will include the client's view of
application software structure, with a description of the primary ArchOS client facilities, language
issues and the general application software development environment as supported by ArchOS.
Chapter three will describe the operating system primitives, including a brief high level description of
the underlying operating system activities likely to be undertaken in response to each of the
primitives. Particular attention will be given to ArchOS' handling of resource management and
consistency, as well as recovery issues. Chapter four will provide a rationale of the design decisions
described in Chapters two and three, outlining the tradeoffs made in the selection of application
structures and the semantics of the operating system primitives.

4.2 ArchOS Computational Model

In this model, we mix two paradigms in the distributed domain: object-oriented and process-basea
programming. While this mixture is hardly novel (e.g., [Lazowska 31]), our paradigm differs from
others in several ways. The primary goal is a high level of modularity and maintainability for both the
real-time application implementer using ArchOS, and for the ArchOS implementers themseives.

4.2.1 Principal Components

The purpose of ArchQS is to provide an execution environment for a real-time decentralized system,
such as a command and control system. The application software of such a system can be
considered to be a single distributed program. The distributed program can be described in terms of
its primary constituent companents, which can be further broken down uniii the farmiiiar seguential

components (processes) are described.

4.2.1.1 Distributed Program

A distributed program consists of one or more arobjects (major prggram modules -- see Section
4.2.1.2) working toward a single goal. Generally, in a real-time system, the entire system can be
considered to be executing a single such distributed program. ‘It is poscible, however, that more than
one distributed program could be running in a system simultaneously (particulariy during system test
activities), subject to the availability of resources, but the presence of mcre than one program may

render certain performance specifications untenable bzcause of the associated artitrarily resolved




resource conflicts. Each program contains a single Root arobject which will, in turn, spawn other

arobjects.

In fact, because ArchOS will be a testbed operating system for the foreseeable future, it is expected
to be used almost exclusively in "system test activities”. Because of this, we have planned the client
interface to allow more than one program to be executed simultaneously. While it is true that
performance specifications may be compromised during such tests, the majority of such tests may
not be greatly impacted. ArchOS will keep track internally of which program components are part of
each separate program, using a fixed set of policies for handling resource ailocation conflicts among
the programs. The remainder of this document, however, will concern itself with the handling of a

single program.

4.2.1.2 Arobject

An arobject is a distributed abstract data type consisting of two principle parts: a specification, and
a bcdy. An instance of an arobject can be dynamically created using the CreateArobject primitive.
More than one instance of a single arobject can be created, each having a distinct identity, forming an
arobject c/fass. The arobject identifier returned by the create primitive identifies the particular
arobject instance to be addressed during communications, or arobject communications may be
initiated to an entire arobject class, using existential or universal quantifiers to specify destination
addressing (see description of Request primitive in Section 4.3.3.1).

The lifetime of the arobject is under user control and is potentially unlimited. The system build
procedures place the uninstantiated copies of the compiled and linked arcbjects on long term storage
(e.g. disk), but the creation of an arcbject causes an instance of the arobject to te created and
uniquely named. An arobject instancc_e will be removed at the end of its lifetime, or a kill operation can
remove an arobject instance.

4.2.1.2.1 Arobject Specification

The arobject specification, describing the external user's view of the arobject, consists of a set of
data types and a set of operations which other arobjects will use to activate services offered by the
arobject. The specification, aithough it completely specifies the external interface to the arobjcct,
makes no commitment with respect to the number of proc.esses within the arobject, their functions, or
their distribution. The operations are specilied in a manner similar to functions in procedural
programming languages: the operation is specitied with its name, its input arguments, and its output

arguments. All operation invocations and replies use call-by-value semantics.

Itis important to note that there is no defined relationship between an arobject's operations and the




entities (processes or procedures) in its body. Any operation could, in principle, be handied by any

process in the arobject (see description of the Accept primitive in Section 4.3.3.4).

4.2.1.2.2 Arobject Body

The arobject body consists of descriptions of private data types, private abstract data types, private
operations, private arobjects, and processes. Every arobject body must contain at least one process,
but the other components of an arobject body are optional. This private information is visible only to
processes within the arobject. If a process is not resident in the same node as an instance of a private
abstract data type, the semantics of a call to one of that private abstract data type's procedures are
those of a remote procedure call. The semantics of the remote procedure call will ensure that the
procecure will be called at most oncg; it will be the responsibility of the calling process to handle the
condition of a procedure never being executed.

Thus, there are a number of potential items in the arobject body, each with a set of semantics .
controlling their use. The procedures defined within a private abstract data type will determine the
access rules to the encapsulated private data, handling mutual exclusion if needed, or providing
"dirty” access if this is acceptable to the client system functional specifications. The private data can
be any normal data types, but may also be defined as atomic or permanent. Data defined as atomic
wiil be forced to stable storage upon commitment of a transaction, ur restored to its prior, or some
equivalent, state upon transaction abort. Permanent data is similar, except that the copying of this
data to stable storage is done asynchronously (with respect to the changes made to the data) by the
operating system or by an explicit primitive, with no guarantees with respect tc consistency. Atomic

data access is possible only within transactions (see Section 4.2.4).

Private operations and private data types are exactly the same as their counterparts in the
specification part of an arobject, except that their existence is invisible outside the arob;ect; hence
these operations and types may be used only within the arobject. Such operatinns and tynes serve tn
enhance the modularity characteristics of arobjects by providing for nesting of distributed abstract
data types. Similarly, private arobiects are simply arobjects which, once instantiated (see

reateArobject primitive, Section 4.3.2.1) by an arobject, are visible only to the processes within the
outer arobject. Their existence is unknown to external arobjects, and can be used td hide

implementation details in exactly the same way as normal abstract data types.




10

4.2.1.3 Processes

A process is a sequential execution unit within an arobject; it is the dispatchable entity as viewed by
the operating system. An arobject contains one or more processes, of which one may be named
INITIAL. If such a process exists, it is automatically invoked at arobject creation time (see description
of CreateArobject primitive in Section 4.3.2.1), providing for initialization of the private variables which
comprise the arobject’s state. Processes may share a data object with other processes in an arobject
by encapsulating it as an instance of a private abstract type. Processes may be explicitly created only
by other processes in an arobject: their existence is invisible to processes autside the arobject. Once
created. processes are terminated at their own request, at the request of any other process in the
arobject, or at the termination of the arobject instance.

Processes are lightweignt; i.e., no computational state (such as local data) is implicitly transferred to
a process via invocation other than its farmal input parameters, so the invocaticn activity can be made
to be procedurally inexpensive, particularly if appropriate hardware support is available [Jensen 84].
There is no necessity that all processes in an arobject be located at a single node. The model does
not even require that pro‘cesses sharing variables be located at a single node, but the actual
imple mentation might contain such a limitation.

4.2.1.4 Sampile Arobject

The structure of a distributed program and each compaonent of an arobject is illustrated in Figure
4-1. The three small boxes in the {eft portion of the figure represent three cuoperating arabjects.
Arobject 2 has made a Request of arobject 1, and arobject 1 has sent a corresponaing Reply.
Sirmitarly, arobject $ nas requested some service from arobject 2 and received a reply.

While the small boxes that represent arobjects in Figure 4-1 hint at the internal structure of an
arobject (they show that an arobject has two parts and that one part contains internal processes and
grvate abstract data types (padt’s)), they do not show much detail. The iarge box on the right side of
the figure is an exploded view of arobject 2. 1t shows that the two parts of an arobjact are a
specification and a body, and it shows the various cornponents of each part. (These components
were all discussed earlier in this chapter.)

4.2.2 Communication Facilities

Arobjects communicate via invocation parameters and messages. Unlike a remote procedure call
(RPC) mechanism, the requestor and server must agree to communicate with each other. Therr
relationship is thus a symmetnicai pair of cooperating arobjects rather than that of a master/slave.

Such a symmetrical pair can be used to produce either client/server systems, ¢r cocperating arobyect
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Figure 4-1: Distributea Program using Arobjects
systems, or more likely, a mixture of both. This view pervades both the application and ArchOS

implementation paradigms being constructed.

In this example shown in Figure 4-2, the requestor sends a request message explicitly via the
Request primitive and the server (i.e., Process A) performs an Accept primitive. The Trans-Id variable
in the requestor is set to the unique request transaction identification if the request initiation is
successful, and is set to a null transaction id ("NULL-TID") if an error has been detecied (e.g., invalid
arobject id). The body of the request message must match the corresponding operation parameter
template provided in the target arobject specification, using call-by-value semantics. Similarly, the
body of the reply message contains the operation's return-parameters. if a transaction is in progress
when the request is made, ArchOS will manage the applicable transaction semantics, depending on

the transaction type (See Section 4.2.4).




Requestor-Arobject

Requestor-Process

Trans-ID = Request(Target-arobject,{operation>,<msg> {reply-msg>)

Target-Arobject ~

l?rocess A

loog .
stgt{;s = AcceptAny(<operation>,<msg>);
process-id = CreateProcess(<Process-B> <{msg>);

}

Process B

Trans-iD = Reply(<req-trans-id> <reply-msg>);

Figure 4-2: Cornmunication Paradigm in ArchOS

4.2.3 System Load and Initialization

Although system generation is beyond the scope of this document, we will assume that a system of
application arobjects has been built, and that a directory (possibly partitioned) of the arobjects has
also been constructed, and is available to each node. For each distributed program (normally one,
but possibly more than one during test phases), one arobject has been identified as a root arobject.

At system startup, once ArchOS has initialized itself and determined its initial state, the directory will
be searched for every client root arobject, each of which will then be automatically Created, including
execution of its INITIAL process. This action will then compiete the system load and initialization, with

or without operator assistance.
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4.2.4 Transactions

ArchOS will use transactions in order to apply the properties that transactions have traditionally
displayed in database applications (such as failure atomicity and data permanence) within the
operating system. OS-level transactions should facilitate the maintenance of system consistency
while simplifying data sharing among multiple processes. In fact, we expect to use transactions
extensively within the ArchQOS system primitives.

The ArchQOS transaction facility does not provide failure atomicity and permanence for all of the
data accessed by a transaction. Rather, only the data items that have been explicitly dec!ared to be

atomic have these properties.

4.2.4.1 Elementary and Compound Transactions

ArchOS will support two types of transactions, elementary transactions and compound
transactions, which may be nested in arbitrary combinations. Elementary transactions correspond to
traditional nested transactions [Moss 81]. Compound transactions [Sha 84] are supported by ArchOS
in crder to provide more potential concurrency than elementary transactions and differ from
elementary transactions in one important way: when a compound transaction commits, the
processing which makes the effects of the transaction permanent and visible (the commit processing)
takes place immediately. |n this manner, a compound transaction is treated as if it were a top-level

transaction, even though it may actually be nested within another transaction.

Compound transactions must be viewed differently than traditional, serializable transactions. In the
traditional case, the transaction writer is able to assume that his transaction will be executed as if it
were the only transaction in the system. The transaction facility will perform whatever concurrency
control is necessary to ensure that the entire transaction will be executed atomically so that no other
transaction can view the partial results of this transaction; other transactions can view only the final,
committed results. 1he system thereby ensures that the operations performed on the atcmic dula
objects correspond to some serial ordering of the transactions; this, in turn, guarantees that a set of
transactions which individually preserve the consistency of the atomic objects they access will also

collectively preserve that consistency.
[ J

Compound transactions do not allow the transaction writer to act as though that writer's transaction
is the only one active in the system at any given time. Rather, the writer of a compound transaction
must realize that, in essense, a compound transaction allows other transactions to view partial results
of computations. That is, if a compound trans~ction is nested within another transaction, when the

compound transaction commits, it is imolicitly allowing other transactions to view the state of the




atomic data objects that it has manipulated. Since the outer transaction has not yet committed, this
state may be considered a partial result of the computation being performed by the outer transaction.
(Compound transactions allow partial results to be visible, thus admitting the possibility of side
effects, while providing a means of increasing concurrency in applications where such transactions

can be empioyed.)

Due to the fact that a compound transaction can atlow other transactions to see partial results of an
ongoing computatian, compound transactions must be written carefully. In particular, a compound
transaction should perform a consistency preserving transformation on the set of atomic data objects
that it accesses. A consistency preserving transformation is a set of operations that transforms a set
of atomic data objects from one consistent state into another consistent state. In this way, no other
transaction can ever see a set of atomic data objects in an inconsistent state. For applications in
which it is acceptable to allow other transactions to view certain partial resuits that represent
consistent states for a set of atomic data objects, compound transactions may be used, and an

increase in overall application and system concurrency can result.

The behavior described albove has several important consequences for compound transactions:

e it may be impossible to "undo” (in the sense of Moss's nested transactions) the effects of
a committed compound transaction which is nested within another transaction. That is,
in the event that 2 commited compound transaction is later aborted (due to the abortion
of a higher level transaction which containg that compound transaction), there is no way
that ArchOS can guarantee that the atomic data structures manipulated by that
compound transaction can be restored to the same state that they possessed pricr to the
initiation of the transaction. However, ArchOS does provide a method by which an
arobject author can define an operation, called a compensation operation, to be
associated with each operation defined on a given arobject. It is expected that the
arobject writer will write a compensation operation for each arobject operation that could
be invoked durind a compound transaction. (In some cases, a compensation operation
will invoive more than simply restoring an object to its original state. For example, after a
compound transaction has altered the value of some shared variakle, it ic pessible for
other transactions to read, or even change, that vaiue. Later, if compensalion must be
performed for the cammitted compound transaction (due to the abortion of a higher-level
transaction), it may be necessary to take additional steps to assure that the visiblity of the
shared variable’s value during the interval between the compound transaction’s
commitment and subsequent abortion has not caused any undesiracle side effects. One
possible step, for instance, might involve broadcasting a message to all of the potential
viewers of the shared variabie’s value, stating that a transaction abort has caused the
value seen most recently to be invalidated.) !n the event that one or more arobject
operations were invoked during the processing of a committed compound transaction
that s subsequently oborted, ArchQS will properly compose the corresponding
compensation gperations in order to imitate the effects of a traditional "undo” operation.
These compensation operations will then transform the states of the atomic dJata
structures manipulated during the compound transaction execution into some metnber of
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a class of states that are equivalent, although not necessarily identical, to the pre-
transaction states of those data structures.?

¢ Compound transactions can be used to release shared resources before the completion
of an entire nested transaction execution, potentially increasing system concurrency.

Transactions are defined by the arobject programmer by means of ArchQOS primitives. These
primitives appear as programming constructs similar to those used to define while and for loops.
Such a syntactic structure allows a transaction to be placed at any point in any process, while

insuring that both the beginning and the end of the transaction occur within a single process.

ArchQOS will handle the ordering of compensation operations for aborted compound transactions
automaticaily. This will be done by constructing a sequence of compensation operations
corresponding to the operations performed during the execution of a compound transaction. In the
event that this compound transaction is committed and subsequently aborted, these compensation -
operations will be performed in the reverse order of the original execution sequence. As explained
above, aithough ArchOS wili initiate the processing of these compensation operations, the operations
themselves must be defined by the author of the arobject whose operations were invoked by the
compound transaction.

The ArchOS client will often need to access shared data during transaction processing. Such
accesses are coordinated by means of a locking mechanism. The client must explicitly request locks
on the shared data objects that are needed for the execution of a given transaction. The following
section discusses the ArchOS locking facilities in detail.

4.2.4.2 Locks

ArchQOS supports two types of locks: discrete locks on independent, individual data items, and tree
locks [Silberschatz 80], which are structures of reiated discrete locks. in the case of discrete locks,

the client abtains (sets) a lock for the desired data item, manipulates the item, and releases the lock.

Tree locks are handled in a somewhat different manner. In this case, there is a tree structure of

locks, and there are a few rules that must be followed when accessing the locks. in particutar: -

e Initially, a client may set a lock located at any point in the tree of locks,

¢ Subseguently, a client may set any lock whose parent locik is currently held by that client.

2 , L
Strictly speaking, this is not quite true. In fact, the state of the atomic data structures will be =guivalent to the Hlate that
~ou!d have existed had all of the other concurrent committed transactions taken place in the: .bsence of the aboilcd
compound transaction.
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e A client cannot dacquire a tree lock, release it, and then reacquire it before all of the
client’s locks in that tree have been released.

e Locks may be released at any time, as long as the above conditions hold.

Tree locks have one important property: if all of the locks involved in a set of computations are
contained in a single lock tree and if the above rules are obeyed and if all tree locks are released in a

finite amount of time, then deadlocks involving locks in the tree are impossible.

Within transactions, locks are obtained explicitly by the arobject programmer. When a nested
elementary transaction commits, its locks are passed to its parent transaction; when a top-level
elementary transaction or any compound transaction commits, all of the locks obtained by that
transaction are released. (ArchOS will handle this automatically.) When a transaction is initiated
from within the scope of a higher-level transaction (see next section for a discussion of transaction
scope}, it does not automatically inherit the locks which belong to its parent transaction. However, it

may attempt to obtain locks held by any of its ancestors by means of the SetLock primitive.

In addition to the lock facilities mentioned above, a primitive is provided to release locks. However,
the Releaselock primitive must be used carefuily within transactions. Transactions possess desirable
properties as a result of the fact that they restrict the freedom with which the locking and unlocking of
data items can occur. If a client abuses the locking/unlocking conventions employed by the ArchOS
transaction facility by improperly making Releaselock invocations, then ArchOS may not be aole to
complete the processing of the client's transaction. Rather, ArchOS will detect the violation of the
locking conventions and will terminate the transaction in as orderly a manner as possible. More
precisely. ArchOS will abort the transaction upon detection of a lock protocol viclation. This may
result in an inconsistent or incorrect state for some atomic objects. However, since the transaction
can only release locks that it can explicitly name, the integrity of atomic data objects which are
manipulated on its behalf can be guaranteed by appropriate use-of transactions to encapsulate these
other atomic data objects. Such an encapsulation will guarantee that the atomic data objects
manipulated by these transactions will be in consistent states and can recover to other consistent
states when the lock-violating transaction is aborted. However, since the lock-violating transaction
has abused the locking conventions, it may be impossibie to properly recover the atomic data objects
that it manipulates directly. In that case, ArchQS cannot ensure that these atomic data objects will be
in & congistent state. (See the explanation concerning consistency preserving transformations in
Section 4.2.4.1)

Despite the warning given above, the ReleaselLock primitive does have “"safe" applicaticns. For
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instance, it can be used to manipulate tree locks or to release locks that were obtained during

non-transaction processing.

4.2.4.3 Transaction Scope, Models, and Lock Passing

This sectiogggefines some additional terminology for discussing transactions and introduces the

notion of a transaction 4tge, a structure that allows a simple visualization of the relationships among

“various transactions. In addition, the rules for lock propagation in the ArchOS transaction facility are
specified in more detail.

The preceding discussion concerning transactions dealt with the notion of nested transactions.
The transaction tree is a structure that can be used to explain the behavior of a set of transactions.

Figure 4-3 contains an example of a transaction tree.
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Figure 4-3: Sample Transaction Tree

Each circle in the transaction tree represents a transaction execution. (The transaction nodes have
been labeled so that they may be individually referenced later.) Transaction tree nodes that are

children of a given transaction tree node represent transactions that are nested within a parent
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transaction (that is, either they are contained within the parent transaction’'s definition or they are
executed as a result of invocations performed as part of the parent transaction). Children that are
connected to their parent by a single line only are executed in a serial order, with the leftmost child
being axecuted first; children that are connected to their parent by a line through which an arc passes
are executed concurrently. (These concurrent executions are typically the result of executing

RequestSingle or RequestAll primitives.)

Each transaction has an associated scope. That scope is delimited by the transaction definition
primitive. Any statement that is part of the transaction definition is within the scope of the transaction,
as are any statements that are executed as a resuit of arobject operation invocations or procedure or
function calls made by statements within the transaction’'s scope. With respect to the transaction tree
representation, all of the subtree at or beneath the node corresponding to a given transaction lies in
the scope of that transaction.

The transaction tree can also be used to explain the ArchOS rules governing lock passing among
transactions. As explained in Section 4.2.4.2, the client explicitly obtains the locks that are required
by a transaction. When a nested elementary transaction commits, all of the locks that it held are
passed to the transaction in which it is nested (its parent in the transaction tree); when a nested
compound transaction commits, all of its locks are released.

The ruies that determine whici locks a transaction may obtain are more involved. Two transactions
are said to be unrelated if: (1) they are not contained in a single transaction tree, or (2) they are in a
single transaction tree and are concurrently executing siblings or descendants of concurrently
executing siblings, or (3) they are in a single transaction tree in which one is an ancester of the other
and either the descendent is a compound transaction or there is a compound transaction on the path
connecting the two transaction nodes in the corresponding transaction tree. (Note that according to
this definition, a compound child transaction is always unrelated to its parent transaction.) Two
unrelated transactions may compete for locks, and they may hold locks with compatible lock modas
for a single data object at any given time. However, if they request incompatible lock modes for a
gingle data object, then one of the competitors will obtain a lock and the ather will block until it can

receive the desired lock, or it will return to the requestor with an appropriate status indication.

Twao transactions are said to be related if they are contained in a single transaction tree where one
is the descendent of the other, the descendent is an elementary transaction, and there are no
compound transactions in the path ccnnecting their respective nodes in the transaction trec. The

lack compatibility rules for related transactions are different than those fcr unrefated transactions. In
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this case, the descendant transaction can obtain any lock mode for any lock held by a related
ancester in the transaction tree, including incompatible fock modes that would not be allowed if the
transactions were unrelated. (Of course, the descendant transaction will have to compete with all of
the unrelated transactions in the system in order to successfully obtain the requested lock with the
desired mode.)

Examples of both related and unrelated transactions can be found in Figure 4-3. For instance,
transaction 'k’ is related to transactions i’ and 'd,' but it is unrelated to transaction 'a’ (due to point (3)
in the above definition of unrelated transactions). Also, while transactions 'f,’ 'g,' and 'h' are all
related to transaction 'c,’ they are all unrelated to one another (due to point (2) in the above definition
of unrelated transactions). Finally, there are only two other related transaction pairs in the tigure:

transaction 'i' is related to transaction 'd' and transaction 'b’ is related to transaction 'a.’

4.2.5 Real-Time Facilities

As previously stated, ArchOS is a real-time operating system; for ArchQOS, this statement carries a
number of important implications. In this work, we define a real-time operating system to be one
which manages its system resources to meet user-defined deadlines. Processes will be scheduled
using deadline-driven scheduling with reference to user-defined policies (See Section 4.2.6). This
means that when the system determines that gprocessing resources are sufficient to meet user
cdeadlines at each node, it will meet them, but when resources are insufficient, uset policy will guide
the operating system in its decisions as to which deadlines should be missed or whether some
processes should be relocated.

Examples of user policies to be implemented in the event of insufficient resources include:

o Minimize average lateness
e Minimize maximum lateness
o Minimize number of late processes

¢ Minimize priorities of late processes

In scheduling terminology, these policies actually define objective functions for the resuiting
scheduling algorithm(s). Scheduling techniques for some of these objective functions (e.g., minimize
maximum lateness) are well known, while for most others optimum algorithms are known to be
intractable. ArchOS will use best effort decision making to implement palicies such as these and

many other similar user policies as closely as possible.
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In order to handle real-time constraints, each ArchOS primitive must have its execution time
bounded. This bound may be probabilistic, and should be determined with respect to the significant
events or actions involved in fulfilling the request (e.g., maximum number of internode messages,

maximum cpu time used).

The local scheduling model used by each ArchQS node to manage its real-time load consists of a
set of n active processes o i between 1 and n. For each P, @ stochastic execution time Ci and a
deadline Ti are known. Ci is a value estimated by the process' implementer and measured by the
system during execution. As a part of the set of user controllable policies described above for
handling missed deadlines, a value function Vi will be defined for each processor to determine the
value to the system associated with achieving a particular degree of lateness for process P, The
value functions themselves are either chasen by ArchQOS with reference to the user policies, or may
be provided directly by the user policies, thus creating an extremely large set of potential overload
policies.

The system will continuously monitor its performance with respect to the likelihood of missing
currently known deadlines, using a best effort to arrange scheduling to distribute the lateness should
missed deadlines occur. This processing is currently a critical portion of the Archons research effort,
and the results of this research will be directly applied to this scheduling.

During process scheduling at a single node, an overload condition may be detected in which
deadlines may be missed. The scheduling algorithms, under control of the appropriate poiicies, may
determine a (sub)set of processes which should be removed from the local nocde and moved
elsewhere. The decision of where they should be moved will be made by an algorithm to be

developed, also under control of the application defined policy.

Primitives are available for specification of pericdic process execution, user specified delay, real-
time clock management, and lateness doctrine policy specification. With respect to the ArchQOS
primitives, deadlines are defined by adding the client-defined deadline interval (see Delay and Alarm
primitives, Section 4.3.9) to the request time, which is defined to be: (1) the scheduled periodic
process execution time, (2) the expiration time of a Delay or Alarm primitive currently in progress, (3)
the time at which a new process becomes ready for execution following a CreateProcess primitive.
Processes for which deadlines have not been defined, it any, will be scheduled with the objective of
maximum throughput subject to the constraint that deadlines will first be met tor processes with
deadlines.
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4.2.6 Policy Definitions

ArchQOS exists to support a distributed (application) program. In order to provide a flexible
environment that the program writer can tailor to satisty specific application-dependent requirements.

ArchOS allows the client to define the policies used to manage certain system resources.

In general, the ArchOS client may dynamically specify the policy to be followed with respect to the
management of a specific resource. For instance, a process scheduling policy may specify the
manner in which processor time is managed. In order to support a wide range of aiternative policies,
some of which may be defined by the client, ArchOS will include a set of mechanisms that wili be

combined as appropriate to supply the foundation for the facility that the client has selected.

The Archons researchers are interested in studying the specification of policy by the application
programmer, as well as the separation of policy and mechanism within a given resource management
facility. In ArchOS, the integration of client-selected policies into the system will be studied in two
areas: process scheduling policies and process reconfiguration policies. Process scheduling
policies are discussed at some length in this section to provide examples for the ArchOS policy
definition facility since these ideas have been actively pursued by Archons researchers; process
reconfiguration policies, which govern the dynamic migration of processes from node to node, are
not as well developed and are an area of future research.

Consider the definition of a process scheduling policy by the client. There are two different
situations under which processes are scheduled: the situation n which there are suthicient
processing resources to satisty all of the client-specified service requests, and the situation in which
the demand for processing resources is greater than theirr supply. At this time ArchOS policy
management is only concerned with the latter case, and this 1s reflected in the ._pzort provig=g for

client-specified scheduling policies.

In the case where the demand for prccessing resources is greater than thoir supir, 'ne cler s oy
two options: the client may issue a general policy statement which corresponds v 1 pre detined
scheduling policy, or the client may define a new policy which adheres to the generai mocei that the
mechanisms underlying the ArchQS process scheduling facility support. These mechanisims are
aimed at optimizing the value of a function, known as the objective function. In ArchCS the objective
function will maximize the sum of a value function evaluated for each runnabie proc =45 o6 1 jven
node. Whenever the client selects a pre-defined scheduling policy. ArchCS wiil transicrm this
selection into the appropriate value (and hence, objective) function. in situationy, ah<re the Chent

wants to use a scheduling policy that ArchOS does not "know abaut,” the - hent myst =vphicitl;
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specify the value function to be used. (The client accomplishs this by means of specifying the

parameters for a value function. Value functions are also discussed in Section 4.2.5.)

The set of pre-defined scheduling policies which may be selected when the demand for processing
resources exceeds the supply includes the following examples (See Section 4.2.5 for a discussion of

process deadlines and real-time considerations, in general.):

e minimizing the number of deadlines missed;
e minimizing the average lateness;

e minimizing the maximum lateness;

& maximizing the minimum lateness;

e minimizing the weighted tardiness. (Tardiness is defined to be non-negative lateness,
and the weighting factor can incorporate process or arobject priorities into the
scheduling computation.)

The implementation * client policy definition in ArchOS will include the notions of policy names and
a corresponding set of policy modufes. For example, Schedule and Reconfigure will be recognized
by the system as policy names and their bodies can be kept as a separate policy module. All of the
client-defined policy modules are maintained by a policy set arobject, which will be instantiated by the
application program. Thus, it will also be possible to add, delete, or change the existing policy
module for a given palicy by invoking a corresponding operation of the policy set arobject during run
time.

Each policy module can be built by referring to a set of policy attributes. These attributes are used
to determine the policy to be carried out by ArchQOS or to pass information to the palicy module so
that it can make a particular policy decision. For instance. the arobject priority and lateness doctrine
parameters listed below could be used by ArchOS to translate ihe client's policy desires into an

cbjective function to handle process scheduling.

Inclusion of a policy set arobject in an application system will result in its INITIAL process being
scheduled during system initialization. This arobject may then define a set of policy attributes for this
program. Some examples of attributes that might be used for the Schedule or Reconfiqure policies
are

e Arobject prionty -- relative scheduling priority of instances of one arobject versus

instances of other arobjects in the appiication program during periods when there are not
enough computing resources to satisfy all demands. It should be notexd that in the avent
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of more than one application program running on the ArchOS system, no relative
priorities may be determined between them, so performance of either or both may be
adversely affected. (As stated in Section 4.2.1.1, ArchOS is designed expressly to
support a single program, or set of arobjects. This set of arobjects may well perform
computations that would normally be associated with a number of separate "tasks.”
However, as far as ArchOS is concerned, this collection of tasks comprises a single
distributed program since all of the relative priorities among the component arobjects are
defined.)

¢ Lateness doctrine -- rules to be followed in the event that deadlines must be missed. This
doctrine indicates the nature of processing which will characterize degraded modes,
including such possibilities as maximizing the minimum lateness, minimizing the
maximum lateness, minimizing the average lateness, etc. Execution of these doctrines
will be done on a best effort basis utilizing the available information, even though
incomplete or inaccurate, maximizing its value, and making the decision as near optimal
as possible, consistent'with the application performance requirements.

4.3 ArchOS Primitives

ArchQOS primitives are defined as a set on operations which manipulate various system and kernel
arobjects. The primitives can be classified as system and kerne/ primitives. The system primitives are
provided by system arobjects which exist above the kernel while the kernel primitives are defined
within a set of kernel arobjects. In this section, we will specify all of the ArchCS primitives (both
kernel and system) which are visible to a client. Other kernel primitives will be described in the
ArchQS System Architecture Specification.

4.3.1 Specification of Primitives

We will use the following format to describe the specification of ArchOS primitives. The
specification of a primitive consists of two parts. The first part describes the functionality of the
primitive, and the second part defines the actual interface for a client process by using a syntactic

temolate shown in below.

It should be noted that since we adopted a C.like syntax in this document, many style of type
declataions are adapted frcm C [Kernighan 78]. For instance, a pointer called "ptr” to a type, say
"TYPEX", will be specified as "TYPEX *ptr". An optional argument, say arg,, of a primitive will be
indicated by [, argoj in its argument list.

valy = Primitive(arg,, ..., arg,)

0

TYPEo valO This indicates that the "valo" has the type "TYPEO". It also includes the type
detinition of TYPE  if nccessary.
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TYPE, arg, This line specities the type of argument,.
'I’YPEk arg, This line specifies the type of argument, .

The first line in this template shows that an ArchOS primitive, called Primitive requires k

arguments, such as arg,, ..., arg,, and returns a value.

The additonal part may consists of error or abnormal conditions refated to the above primitive

invocation and may have the following explanations.

On Error: This part explains the types of errors that can occur and what values will be returned in
response to an error. In general, a client can get detailed error information by locking at a specific
area called an error block. The error block must be declared by using a SetErrorBlock primitive (see
Section 4.3.11.5),

On Timeout: f a primitive has a timeout argument, then this may explain what happens after a
timeout occurs.

This may also contain extra comments such as follows.

Note: This is an example of additional comments on this primitive.

4.3.2 Arobject/Process Management

The arcbject and process management provides creation and destruction of arobject instances as
well as process instances, The CreateArabject and CreateProcess primitives create an instance of an
arobject and a process respectively. Similary, the KillArobject and /ZillProcess prumtives kill a specific
instance.

The lifetime of an arobject instance can vary, is determined by the lifetime of the last active process
ingtance within that arobject instance. In other words, if an instance of an arobject 1s killed, all of its
internal processes will he haited and removed. A process may terminate by normat exit (i.e., reaching

the end of its body) or by an explicit KillProcess primitive.
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4.3.2.1 Create

A CreateArobject primitive creates a new instance of an arobject at an arbitrary node or a specified
node. Similarly, a CreateProcess primitive creates a new instance of a process in the arobject. The
selection of a node is made outomatically by ArchOS unless overridden by the Create operation.

Upon arobject creation, the arabject’s INITIAL process is automatically dispatched.

An optional set of parameters can be passed to the INITIAL process when the arobject is

instantiated by using an initial message (i.e., "init-msg").

arobject-id = CreateArobject(arobj-name [, init-msg] {, node-id])
process-id = CreateProcess(process-name {, init-msg] {, node-id})

i

AlD arobject-id The unique identification of the instantiated arobject.
P1D process-id The unique identification of the instantiated process.

ARCBJ-NAME arobj-name
The name of arobject to be instantiated.

PROCESS-NAME process-name
The namsz cf process to be instantiated.

MESSAGE *init-msg
A pointer to the initial message which contains initial parameters for the INITIAL
process.

NODE-ID node-id Node identification (optional). An actual node may be designated, or a node
selection criterion may be designated (e.g., the current node, any node except the
current node, any node, or a specific node).

On Error: If a CreateArobject or CreateProcess primitive fails, a "NULL-AID" or "NULL-PID" will be
returned, respectively. The detailed error code can be found in an error block which is defined by

issuing a SetErrorBlock primitive. (see Section 4.3.11.5),

4.3.2.2 Kill

The KillArobject and KillProcess primitives remaove a process and arobject instance resnectively. An
arobject may be killed only by one of its own processes (suicide allowed, no murder). In oreler to kill
another arobject, the target arobject must have an appropriate operation defined within its

specification so it can kill itself.




A process can be killed only by a process which exists in the same arobject instance.

val = KillArobject(aid)

val = KillProcess(pid)
BOOLEAN val TRUE if this Killing was successful; otherwise FALSE.
AID aid The arobject id of the target arobject to be killed.
PID pid The process id of the target process to be killed.

On Error: i the specified arobject does not exist in the system, or a target process does not exist in

the requestor's arobject instance, a "FALSE" value will be returned.

4.3.2.3 Self!D and ParentiD
The SeifAid primitive returns the requestor's arobject id and the ParentAid primitive returns the
parent’s arobject id of the specified arobject. The Se/fPid primitive returns the process id (pid) cf the

requestor and the ParentPid primitive returns the parent's pid of the the specified process.

aid = SeltAid()
paid = ParentAid(aid-x)
pid = SeltPid()
ppid = ParentPid(pid-x)

AID aid. aid-x, paid The arobject id.

PID pid. pd-x, ppid The process id.

Cn Error. 't A non-existing aid or pid is given to ParentAid/Pid, a "NULL-AID" or "NULL-PID" will be
returned.

4.3.2.4 BindName

Any arobject or process can have a (run time) reference name defined by these binaing primitives
within a single distributed program. The BindArobjectNarne and BingProressName nnmitives hind
the requested instance of an arobject or process to a reference name. Unless an Unoind primitive 1s

executed. the lifetime of a binding 1s the same as the lifetime of an arobject or process instance.
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- -

This binding allows an arobject or a process to have more than one reference name, or a single

reference name can be bound muitiple arobject or process instances.

To cancel the current binding, a process must use the appropriate unbind primitive.

A

velee BindArobjectName(aid, arobj-refname)
val = BindProcessName(pid, process-refname)

BOOLEA! val TRUE if this binding was successful.
AiD aid The arobject id.
PID pid The process id.

AROBJ-REFNAME arobj-refname
The requested reference name for an arobject given by aid.
* -
PROCESS-REFNAME process-refname
The requested reference name for a process given by pid.

On Error: A "FALSE" value will be returned in the case of an error. For instance, if a client attempts
to bind non-existant arobject or process instance to a reference name, a .- __c" value will be
returned.

4.3.2.5 UnbindName

The UnbindArobjectName and UnbindProcessName primitives release the current binding between

the specified instance of an arobject or process and a reference name.

val = UnbindArobjectName(aid, arobj-refname)
val = UnbindProcessName(pid, process.refname)

BOOLEAN val TRUE if this unbinding was successful; otherwise FALSE.
AlD aid The arobije <t id.
PI1D pid The process id.

ARQBJ-REFNAME arob)-refname
The requested reference name for an arobject given by aid.

PROCESS-REFNAME process-refname
The requested reference name for a process qiven by pid.




On Error: A "FALSE" value will be returned, if a client attempts to reiease the binding for a

non-existing reference name.

4.3.2.6 FindID and FindAIlID

A FindID primitive returns the unique id (i.e., aid or pid) of the given arobject or process in a specific
search domain. A search domain can be specified with respect to all of the internal arobjects,
external arobjects, a local node, a remote node, or a reasonable combination of among four. If more
than one instance uses the same reference name, the unique id of any one of them will be returned. A
FindAlllD primitive, on the other hand, returns all of the aid's‘ and pid's which correspond to the given

reference name.

aid = FindAid(arobj-refname [, preference])

pid = FindPid(process-refname [, preferencel])
aid-list = FindAllAid(arobj-refname [, preference])
pid-list = FindAllPid(process-refname [, preference})

AID aid _ The arobject id.
PID pid The process id.
AID-LIST aid-list  The list of corresponding aid's.
PID-LIST pid-list  The list of carresponding pid's.

AROBJ-REFNAME arobj-refname
The reference name of related arobject(s).

PROCESS-RCFNAME process-refname .
The reference name of related process(es).

PREFERENCE preference
The preference can specify a search domain such as "INTERNAL",
"EXTERNAL", "LOCAL", "REMOTE", "INTERNAL-LOCAL", "INTERNAL.-
REMOTE", "EXTERNAL-LOCAL", "EXTERNAL-REMOTE".

On Error: It the FindAid or FindPid primitive fails, a "NULL-AID” or "NULL-PID" will be returned
respectively. If a FindAll primitive fails, a "NULL-AID-LIST" or "NULL-PID-LIST" will be returned.




4.3.3 Communication Management

The communication management provides an inter- and intra-node communication facility among
cooperating arobjects. A process can invoke an operation at a specific instance of an arobject by
sending a request message or can invoke the same gperation at multiple instances of an arobject
which have been bound to a single reference name. in the later case, the multipie computations are
pertormed concurrently.

In particular, a process can send any arobject instance a request message to invoke an operation
without knowing its actual location. A process can also invoke a private operation which is defined

within its local arobject.

There are essentially three types of primitives to provide flexible cooperation among arobjects:
Request, Accept, and Reply. In addition to these, the RequestAll, RequestSingle, and GetReply
primitives are added in order to interact with multipie instances of arobjects concurrently. All of the
communication primitives are executed as transactions so that ArchQOS can provide properties such

as failure atomicity and permanence. (see Section 4.3.6).

-

A mesgsage consists of a header and a body. The message header will be generated by ArcnOS and
contains controf information. The message body carries all of the parameters and will be set bty the
client process. Since each arobject has a separate address space, parameters must be sent using

call-by-vaiue semantics.

4.3.3.1 Request

The Request primitive provides remote procedure call semantics in which the requesting process
invokes an operation by sending a message and blocks until the receiving arobject returns a reply
message. Identically, if the receiver arobject is the same arobject, a local operation will be invoked.
When the reply is generated, it is sent to the requostor which is then unblecked. !f the requesting
process needs to limit the ailowed response time, it may do so by creating a small process to handle

the timeout conditior..

trans-id = Request(arobj-id, opr, msg, reply-msg)

TRAMSACTION-ID trans-id
The transaction id of the transaction on whacse behaif the request is teing made.

AlD arobj-id The unique id of the receiving arobject.

COPE-SELECTGCR opr
The name of the operation to te performed.
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MESSAGE *msg A pointer to the message which contains the parameters of the operation to be
performed. The message to the destination arobject must not contain any
pointers (i.e., call-by-value semantics must be used).

REPLY-MSG *reply-msg
A pointer to the reply message.

On Error: The Request primitive may fail in the foilowing situations:

e The destination arobject’s node is not available.
e The destination arobject does not exist.
e The target operation is not defined.

e The request message does not match the receiver's message type.

if the Request primitive fails, a "NULL-TID" will be returned.

4.3.3.2 RequestSingle and RequestAll

The RequestSingle and RequestAll primitives can send a request message and proceed without
waiting fgr a reply message. The RequestSingle primitive provides nonblocking one-to-one
communication and, the RequestAll primitive supports one-to-many communication. The requesting
process may thus invoke an cperation on more than one instance of ap arobject or process with one
request. To receive all of the replies, the GetReply primitive may be repeated until a reply with a null

body is received.

trans-id
trans-id

RequestSingle(arobj-id, opr, msg)
RequestAll{arobj-refname, opr, msg)

[}

TRANSACTICN-ID trans-id
The transaction ID of the transaction on whose behalf the request is being made.

AlD arobj-id The ID of the receiving arobject.

AROBJ-REFNAME arobj-refname
The reference name of the receiving arobject(s).

OPE-SELECTOR opr
The name of the operation to be performed.

MESSAGE *msg A pointer to the messaye which contains the parametcrs of the operation to be
performed. The message to the destination arobject must nct contain any
pointers (i.e., call by value semantics must be used).




On Error: The RequestSingle and RequestAll primitives fail if similar to those situations mentioned in
the previous section happen. if the RequestSingle or RequestAll primitive fails, a "NULL-TID" will be

returned.

4.3.3.3 GetReply

The GetReply primitive receives a reply message which has the specific transaction id generated by
the preceding RequestAll primitive. If the specific reply message is not available, then the caller will
be blocked until the message becomes available.

aid = GetReply(reg-trans-id, reply-msg)

AID aid The arobject id of the replying arobject.

TRANSACTION-ID reg-trans-id
The transactiomid of tha corresponding RequestSingle or RequestAll primitive.

REPLY-MSG “reply-msg
A pointer to the reply message.

On Error: The GetReply primitive fails, if the specified transaction does not exist; a "NULL-AID" will
then be returned.

4.3.3.4 Accept and AcceptAny

The process respansible for an arobject‘ operation receives a message using the Accept primitive.
Using the selection criteria specitied, the operating system selects an eligible message from the
arobject's input queue and returns it. The process operates on the message, respanding with a reply
when processing has been completed. If no suitable message is in the request message queue, then

the caller will block until such a message becomes available.

The AcceptAny primitive can receive a message from any arobject instance with any operation (i.e.,
"ANYOPR") or a specified operation request. The primitive can return the requestor’s transaction id,
specified cperator, and rcquestor's aid. The Accept primitive can receive 2 mescage from a specific

requestor arobject and returns the requestor’'s transaction id and the requested operator.
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(req-trans-id, req-opr, requestor) = AcceptAny(opr, msg)

(req-trans-id, req-opr) = Accept(requestor, opr, msg)

AlID requestor The aid of the requesting arobject.

OPE-SELECTOR opr, req-opr
The name of operation to be performed. The "opr"” parameter can be a specific
operation name or "ANYOPR",

TRANSACTION-ID req-trans-id
The transaction id of the transaction on whose behalf the request is made.

MESSAGE *msg A pointer to the message buffer.

On Error: The AcceptAny primitive fails if the specified operation does not exist. Similarly, the .
Accept primitive fails if the requestor or the operation does not exist. If the AcceptAny or Accept
primitive fails, a “NULL-TID", "NULL-OPR", and "NULL-AID" will be returned.

4.3.3.5 CheckMessageQ

The CheckMessageQ primitive examines the current status of an incoming message gueue without
blocking the caller process. The primitive must specify a message queue type, either "request-
queue” or "reply-queue”. The request-queue queues all of the non-accepted request messages and
is allacated for each arobject instance. The reply-queue maintains all of the non-read reply rnessages
and is assigned to every process instance,

A message can be selected based on the sender’s arobject id, operation name, and/or transaction
id. It more than one argument is given, only messages which satisfy all of the conditions will be
returned. If no corresponding message exists in a specified message queue, a "NULL-PCINTER" will

be returned.

ptr-mds = CheckMessageQ(qtype, requestor, opr, req-trans-id)

MSG-DESCRIPTORS *prt-mds
Pointer to a list of the message descriptors selected by the specitied selection
criteria.

MSG-Q gtype This indicates either "request-" or "reply-" message queue.

AID requestor The aid of the requesting araobject.




OPE-SELECTOR opr
The operation to be performed. The "opr" parameter can be a specific operation
name or "ANYOPR",

TRANSACTION-ID reqg-trans-id
The transaction id of the corresponding RequestSingle or RequestAll primitive.

On Error: The CheckMessageQ primitive fails if the specified message queue, operation, or the
transaction id does not exist. If the CheckMessageQ primitive fails, a "NULL-POINTER" will be
returned.

4.3.3.6 Reply

After processing an Accept primitive, a process must use a Reply primitive to send the completion
message i0 the requesting process. At the requestor's site, the completion message is received by
the second half of the synchrouns Request primitive or the GetReply primitive. it should be noted that
the reply need not necessarily be sent from the same process which accepted the operation. In other
words, the requestor’s transaction id is used to determin a proper reply message.

trans-id = Reply(req-trans-id, reply-msg)

TRANSACTION-ID trans-id
The transaction id of this Reply primitive (not the requestor's transaction id)

TRANSACTION-1D reg-trans-id
The transaction id of the request that has been serviced.

MESSAGE *reply-msg
A pointer to the reply message.

On Error: The Reply primitive fails if the specified transaction has alreacdy been aborted. If the Reply
primitive fails, a "NULL-TID" wiil be returned.

4.3.4 Private Object Management
A process can dynamically create a private object, which is an instance of a private abstract data
type defined n its arobject, at any node. If a private abstract data type has instances of atomic or

permanent data objects, the actual data objects will be allocated in non-volatile memory




4.3.4.1 Allocate/Free Object

An AllocateObject primitive allocates an instance of a private abstract data type at any node and a

FreeQbject primitive deallocates the specified instance.

object-ptr = AllocateObject(object-type, parameters [, node-id])

val = FreeObject{object-ptr)

OBJECT-PTR object-ptr
A pointer to the allocated private data object.

OBJECT-TYPE object-type
The object-type indicates the name of a private abstract data type.

BOOLEAN val TRUE if the object was released successful; otherwise FALSE.
NODE-ID node-id Node identification. An actual node may be designated, or a node selection

criterion may be designated (e.g., the current node, any node except the current
node, any node, or a specific node).

On Error: if the object-type is not defined an AllocateObject primitive fails and returns a "NULL-
POINTER". If the object-ptr is not pointing to a proper permanent object, then the FreeObject
primitive fails and returns "FALSE",

4.3.4.2 FlushPermanent

A FlushPermanent primitive blocks the caller untii the specified data object is saved in non-votatile
storage.

FlushPermanent(object-ptr, size)

OBJECT-PTR abject-ptr
A pointer to the permanent data object.

INT size The number of bytes which must be flushed into permanent storage. o

On Error: The FlushPermanent primitive fails if the specified object does not exist.
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4.3.5 Synchronization
ArchOS provides two levels of synchronization facilities. One, the critical region, is for controlling
the concurrent access to a single shared object within an arobject, while the other, the locak, is for

controlling accesses from concurrent transactions.

The critical region scheme should be used when the shared object does not need to provide failure
atomicity. Thatis, a clief;t may be able to access an inconsistent state of the object. On the other
hand. if these objects are atomic objects and are accessed from transactions. then a client must be
altowed to see only consistent objects. In the critical region scheme, mutual exclusion is achieved by
impiicit locking by using an event variable, while the transactions require an explicit lock on the
atomic object. The CreatelLock and DeletelLock primitives are providad to create and remove a lock

for the explicit locking scheme. Actual locks can be set by using a SetlLock or TestandSetLock

primitive and can be released by using a Releaselock primitive.

4.3.5.1 Region

The Region construct provides a simple mutual exclusion mechanism for controlling concurrent
accesses to shared objects. A timeout value must be specified in order to bound the total execution
time in the critical region including any time spent waiting to enter the region. if a timeout occurs, a

client process is forced to exit from the critical region and an error status is returned.

Region{ev, timeout){ ...}

EVENT-VAR ev The event variable consists of a waiting queue of client processes and an event
counter.

TIMEOUT timeout The timeout value should indicate the maximum execution time for this critical
region including the waiting time.

On Timeout: A client should be able to check whether the critical region was exited due to a timeout

by checking error information in its error block (see Section 4.3.11.5).

4.3.5.2 &realeLock and Deletelock

The CreatelLock primitive creates either a tree-type or discrete-type lock and returns a unique /ock
id. Since alock id is not bound to any data objact explicitly, a client must be responsible for utilizisng
the lock in accordance with the locking protocol. The DeleteLock primitive removes the specified

lock from the system,




newlock-id = Createlock({parent-lockid])
val = Deletelock(lockid)

LOCK-ID newlock-id
A new lock id will be returned.

BOOLEAN val TRUE it the lockid is removed successfully; otherwise FALSE.

LOCK-ID parent-lockid
if the created lock must be a tree-type lock, then its parent-lockid must be
specified. If the parent-iockid is a “NULL-LOCK-ID", then the new lock will be the
root of a new lock tree. If a parent-lockid is not given, then the new lock will be a
discrete-type lock.

LOCK-ID lockid The lockid to be deleted. if the tockid is a tree-type tock, then the entire subtree of
which this lock is the root will be deleted.

On Error: If a parent lockid does not exist, then the CreateLock primitive fails and returns a "NULL-
LOCK-ID". A DeleteLock primitive fails if the specified lockid does not exist, and returns "FALSE".

4.3.5.3 SetLock, TestLock, and Releaselock

The SetLock primitive sets a "tree-type” or "discrete-type" lock on arbitrary objects by specifying a
lock key and its mode. If a requested lock is being held, the caller will block until it is released. The
TestandSetLock primitive aiso tries to set a lock, however, it will return a "FALSE" if the lock is being
held. If the request lock is a tree-lock type, then the SetLock and TestandSetLock primitives may also

fail due to the violation of the tree-lock convention (See Section 4.2.4.2).

The TestLock primitive checks the availability of a specified lock with a lock mode. In the case of a
tree lock, it also checks whether the locking would be legal in the corresponding lock tree. The
ReleaselLock primitive can refease the lock on an object which was gained by the SetLock or

TestangSetLock primitive explicitly.

sval = SetlLock(lock-type, lockid, lock-mode)

sval = TestandSetLock(lock-type, lockid, lock-mode)
tval = TestLock{lock-type, lockid, lock-mode)

rval = Releaselock(lock-type, lockid, lock-mode)

i

INT sval 1.f the specified lock is set; 0 if the lock 1s not set. A negative value wili be
returned it an errcr occured.
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INT tval 1 if the specified lock is being held; 0 it the lock is not being held. A negative
value will be returned if an error occured.

INT rval 1 if the specified lock is released:; 0 if the lock is not released. A negztive value
will be returned if an error occured.

LOCK-TYPE lock-type
The lock type can be either "TREE" or "DISCRETE".

LOCK-ID lockid The lockid indicates the unique id of a lock.

LOCK-MQODE lock-mode
The lock mode can be "READ", "WRITE", etc.

On Error: An error may occur if a non-existent lock id or lock mode is used for the above primitives.
A detailed error condition, such as a non-existent lock or lock mode, is available by looking at the
caller's error block (see Section 4.3.11.5),

4.3.6 Transaction/Recovery Management

ArchQS can allow a client process to create a compound transaction or an elementary transaction
which can be nested in any combination. By using nested elementary transactions, a client can use a
traditional "nested transactions” mechanism. In addition to this, the compound transaction provides
a mechanism which can commit the transactions at the end of the current scope without delaying the
commit point to end of the top-level transaction. Since a completed nested compound transaction
cannot be undone, ArchOS provides a mechanism to perform corresponding compensate actions

automatically (see Section 4.2.4).

It should be noted that ArchOS cannot generate such a sequence of compensate actions
automatically. However, ArchOS provides a mechanism to execute the defined compensate actions
in the proper sequence to make the status of each affected atomic object into a member of an

equivalence class of its carrect "pre-execution” state. (See Section 4.2.4.1)

4.3.6.1 Compound Transaction

A compound transaction construct creates a new transaction scope in a client process. Within this

scope, a client can access atomic objects as if these computational steps were executed alone.

When a compound transaction starts, no locks will be inherited from its parent transaction it one

exists. That is, all of its locks must be obtained within this scope by means of the Sctl 2ck primitives.




(See Section 4 3.5 3). Howaver, at the end of the compound transaction scope. AtchOb releasos all
of the locks for this transaction automatcaily  1tis also possible to release locks helore the end of the

transacton scopae by using a eleasel.ock primitive explicitly,

I a compound transaction must abort, an Abart Transaction primitive (see Sachion 4 3 6.4) performs
the necessary compensate aclions, breaks the current transaction scope, and passes comntrol to the

end of the transaction scope.

CTtmeoot){ . <transaction steps> .}

TIME timeout The timeout valuo ndicatos the maximum hfotima of this compound teansaction

<transaction stopsey Atomic objocts can only be accessed and altored, within these teansaction steps,

(n Timaaut: The curraent ransaction and all of it child transactions will ba abortod. That s,
ArchQS will axecite all of the necassary compensate actions and undo. Atter completion of thene
actiona, the status of atomic abjects should bo consistent and be one of the moembor of tho

aqunvalence class ol its pra (transaction) axecution state.

4.3.8.2 Elemeantary Transaction
An elemeantary transaction construct also creates a new transaction scope inoa cliont process,
Within this scape, o chient can aceegs atomic objocts agaf thonse computational stepss weare cecontod

alone

Whan an olomentary transaction starts, it can obtiun s ancestor transachon’s locke d theoo e an
ancestar - Thatas, s elomentary transaction may aceass atomic objocts whiich weres manipulated by
the: tugher lavel transactiona. 1 the anceastor has modihed adoonse obact:s, those modibications, anil ho
vimable to thig teanzachion. At the end of an elomentary tansaction scopee, AvchOr, adl propaasade all of
itn locks to the parent trancachon af one owedts 0 the clemontary transaction e, e topoeoe.d
transaction, than all of ita locks will be roleased at thes pomt and b of it domic otyects wll e

committed.

It an elamentay transaction mast abort, an Aborthrancac tion pombives Case Saection 4 Ve )
pertonns thae necessary "undo™ achione,, breales the coanrent aneacion woope and porcae, the

current cantrol to the end of the tansachion cope




ET(timeout){ . .. <transaction steps> ...}

TIME timeout The timeout value indicates the maximum lifetime of this elementary transaction.

{transaction steps> Atomic objects can only be accessed and aitered, within these transaction steps.

On Timeout: The current transaction and all of its child transactions will be aborted. That is,
ArchQS will execute all of the necessary undo and compensate actions automatically. After
completion of these actions, the status of all affected atomic objects should be consistent and be

"identical” to the correct initial (pre-execution) states.

4.3.6.3 SelfTid and ParentTid

The SeifTid primitive returns the id of the current transaction and the Parer:tTid primitive returns the

parent transaction id of the given transaction id.

mytid = SelfTid()
ptid = ParentTid(tid)

TIO mytid The id of the current transaction.
TID tid The id of the specific transaction.
TiD ptid The parent's tid of the given transaction "tid”.

On Error: I the ParentTid primitive fails, a "NULLTID" will be returned.

4.3.6.4 AbortTransaction

The AbcrtTransaction primitive aborts the specified transaction and all of its child transactions
within the same transaction tree (See Figure 4-3 in Section 4.2.4.3). If the transaction that invokes the
AbortTransaction primitive does not belong to same the transaction tree as the transaction which is to
be aborted. a client cannot abort that transaction. This primitive executes all of the necessary "undo”
or "compensate” actions, based on the transaction type, and treaks the current transaction scope
After completion of these acticne, the status of all affected atomic abjects will he “ansistent ond
returned to esither "identical” to or "a membaer of the eqtivalence class™ of theariniti pro execution)

states.
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The AvortincompleteTransaction pnmitive also aborts all of the outstanding incomplete
transactions which had been initiated by an outstanding RequestSingle or RequestAll primitive. In
other words, all of the nested transactions which belong to the specified request transaction but have

not yet completed (committed) will be aborted.

val
val

AbortTransaction(tid)
AbortincompieteTransaction(req-tid)

BOOLEAN val TRUE if the transaction was aborted successfully; otherwise FALSE.
TID tid The id of the transaction.

TiD req-tig The transaction id of the RequestSingle or RequestAll primitive,

On &rror: It an Abort primitive is called from a transcation which is nat a parent of, or identical to. the

designated transaction, the primitive wiil faii and return FALSE.

4.3.6.5 TransactionType

The TransactionType primitive returns the type of the given transaction (a compound or elementary)

and alsc indicates the transaction level.

trantype = TransactionType(tid)

TRANT /PE trantype

The type of the given transaction, such as "CT", "ET", "Nested CT", or 'Nestad
ET"

TID td The id of the transaction.

On Errar it there is no specified transaction in it3 transaction tree, the TransactionType grimitive
fails and returns "NULL-TRAN-TYPE",

4 3.6.6 iIsCommitted

The IsCommutted primitiv.a checks whether the qiven transaction is already committed or not.

val = IsCommitted(tid)

BOCLEAN val TRUE if the specified transaction was commutted. otheraise FALSE.
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TID ud The id of the transaction.

On Error: If there is no specitied transaction in its transaction tree, the /isCommitted primitive fails
and returns "FALSE".

4.3.6.7 IsAborted

The IsAborted primitive checks whether the given transaction is already aborted or not.

. val = IsAborted(tid)

BOOLEAN val TRUE if the specified transaction was aborted; otherwise FALSE.

TID tid The id of the transaction.

LA
Cn Error: if there is no specified transaction in its transaction tree, the IsAborted primitive fails and
returns "FALSE".

4.3.7 File Management

Viewing a file as a set of long term persistent data, it is clear that an arobject can aiso fulfill this role.
To create a file, an instance of the appropriate arobject can be created, and the filename can be
bound to it. To erase the file, the Ki/l primitive will serve. Reading from and writing to the file can be
pgerformed using the appropriate operations of the arobject itseif. Similarly. control functions {e.g.
backspace, random placement, search) become operations of the arobject. The data to be stored in
the file is merely contained in one of the arobject’'s private data objects. If this private data object is
declared to be atomic, then the file will be treated as an atomic file and ail of the file accesses must be

performed from within a transaction scope.

4.3.7.1 File Access Interface
In order to avoid the low level (bare) access to a file arobject (i.e., an explicit invocation of an
operation on a file arobject), ArchOS provides the fcllowing set of prnimitives which support

conventional file access and control functions.

The ZpenfFile primitive opens a specified file with the given access modie. and the CloseFiie file
orrmitive rloses the file. The ReadF:le and VrteFile primitives provide a simpie “byte stream”

ariented read and write access to a hle. respectively. The Croeagter o primitive creatas a file of a Given
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file type and the Deletefile primitive deletes a file. The SeekFile primitive moves the current reading

or wniting position to a spectfied by byteiocation in the file.

fd = OpenFile(filename, mode)
val = CloseFile(fd)

nr = ReadFile(fd, buf, nbytes)

nw = WriteFile(fd, buf, nbytes)
val = CreateFile(filename, filetype)
val = DeleteFile(filename)

pos = SeekFile(fd, offset, origin)

FILEDESCRIPTOR *fd
A pointer to tie file descriptor.

BOCLEAN val TRUE if the specified operation is done successfully; otherwise FALSE.
INT nr The actuai number of bytes which were read.
INT nw The actual number of bytes which were written.

FILENAME filename
The name of the file,

ACCESSMCDE mode

The mode for accessing the file. (e.g., "READ", "WRITE", "APPEND",
"READLOCK", "WRITELOCK", etc).

FILE-TYPE filetype The type of the specified file such as "ATOMIC", "PERMANENT " or "NORMAL".
BUFFER *buf The buffer address.

INT nbytes The number of bytes to be read or written during a Read or \Write operation,
respectively,

LONGINT pos The current pointer's position in the file in bytes. If the seek acticn s done
successfully, the value of pos must be a positive integer; otherwise -1

FILEOFFSET offset The offset value from the given origin point, in bytes.

FILEORIGIN origin The origin indicates the origin of the seek operation. (At the beginning, the
current position, or the end of the file).

On Error: it the file dors not exist or the file mode is not supported. then the Gpenf.ic primibive fails

and returns "NULL-FILE-DESCRIPTGR". It the file descriptor 13 not an ooened descernptor, then a
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close or read/write action fails and "-1" will be returned and a detailed error condition will be ulso set
in the caller's error block. If a create/delete action fails, then "FALSE" will be returned and a detailed
error condition will be also set in the caller’s error block. If the specified file does not exist or the
value of offset or origin is not in the proper range, "-1" will be returned and a detailed error condition

will be also set in the caller's error block.

4.3.81/0 Device Management

A ngrmal I/0 device access pratocol should be similar to the file access protocoi described in
Section 4.3.7. To read, write or send a special command, the target device must be cpened. Cnce all
actions are done, it must to be closed. All device dependent commands can be sent to devices by

using the Set/OControl primitive.

At the lowest level, 1/0 control and data transfer will be handled according to the hardware
interface definition (e.g., memory read and write to memory mapped devices). The /OWait primitive
can be used to wait for an interrupt from a particular device; at most one process may wait for a

particular device interrupt at one time.

4.3.8.1 Basic 1/0Q Device Access Interface

Typically, access to a device is performed by the following primitives. If a device is not readable or

writeable, then a special Set/OContro/ primitive (see Section 4.3.8.3) must be used.

cd OpenDevice{device-name, mcde)
val = CloseDevice(dd)

nr = ReadDevice(dd. buf, nbytes)

nw = WriteDevice(dd, buf, nbytes)

DE'/DESCRIPTOR *dd
A pointer to the device descriptor.

BCTLEANM val TRUE if the specified operation is done successfuily: otherwise FALSE.
INT nr The actual number of bytes which were read.
INT nw The actuai number of bytes which were written,

CR'/NAME device-name
The device name.

ACCESSMCDE mmode
The access maode of the specified device such as "READ . "WRITE ", . tc.




BUFFER *buf The buffer address.

INT nbytes The number of bytes to be read or written during a ReadDevice or WriteDevice
operation, respectively.

On Error: If the device does not exist or the device mode is not supported, the QpenDevice primitive
fails and returns "NULL-DEV-DESCRIPTOR". If the device descriptor is not an opened descriptor,

*

then a close or read/write action fails and "-1" will be returned, a detailed error condition wiil be set

in the cailer’s error block.

4.3.8.2 I0Wait

The /OWait primitive blocks the requestor process until the specified device completes an 1/0

action.

event-cnt = |IOWait(dd, timeout)

INT event-cnt An event counter which indicates the number of basic 1/0 actions performed. If a
negative number is returned, it indicates an error state.

CEV-DESCRIPTOR dd
The device descriptor.

TIME timeout The timeout value indicates the maximum execution time of this |/0 function.

On Error: I the device descriptor is not an opened descriptor, a wait action fails, "-1" will te

returned, a detailed error condition will be set in the caller’s error block.

On Timeout: If an IOWait primitive cannot complete within the specified timeocut value, a negative

valua will be returned.

4.3.8.3 Set!OControl

The Set/CControi primitive sends device control information to the specified device. it als0 receives

status information from the device.

val = SetlQControi(dev-descriptor, io-command, dev-buf, timeout)

BCOLEAN val TRUE if this SetICControl succeeded:; otherwise FALSE.




DEV-DESCRIPTOR *dev-descriptor
A pointer to the device descriptor.

10-COMMAND io-command
The io-command indicates a device-specific control command.

DEV-BUF *dev-buf The dev-buf indicates a pointer to a buffer which will be filled with device status.

TIME timeout The timeout value indicates the maximum execution time of this [/O function.

On Error: if the device descriptor is not an opened descriptor, then a control action fails and

"FALSE" will be returned and a detailed error condition will be also set in the caller’s error block.

Cn Timeout: If an Set/OControl primitive cannot complete within the specified timeout value, a

negative value will be returned.

4.3.9 Time Management

In ArchOS, the time management not only provides a basic access to the system real time clock
which is maintained in non-volatile storage, but also supports primitives which provide the basic

functions of the time-driven (process) scheduling.

The GetAealTime primitive obtains the system’'s current real time clock vajue, while the
GetTimeDate primitive fetches the current absolute time and date. The Dejay primitive delays the
caller’s execution for the specified time period. The A/arm primitive also postpones the caller until the
specified time of day and date. The Delay and Alarm primitives provide apericdic time dependent
processing caontrol, while periodic repetitive processing will normally be controlled using the Policy

primitives (see Section 4.3.10).

4.3.9.1 CetRealTime

The GetRealTime primitive returns the current real time clock value in microseconds.

rtc = GetRealTime()

REALTIME rtc Value of current real-time clock 1in microseconds. This value may be used to
compute time values for use in delay or alarm primitives,




4.3.9.2 GetTimeDate

The GetTimeDate primitive returns the current absolute time and date. The time value accuracy will
be limited by delays in the calibration entry performed by the application, and cannot be expected to
return exactly the same value simultaneously at every node. ArchQS will maintain this information on

a best effart basis.

(time, date) = GetTimeDate()

TIME time Value of current time of day in microseconds from midnight.

DATE date Julian date of this day.

QOn Error: If the SetTimeDate primitive operation has not been executed since the system was

initialized, the date value returned 1s zero.

4.3.9.3 Delay

The Delay primitive delays a specified length of time (in microseconds), then returns the current
date and time when the delay has been completed and execution has resumed. This pnmitive can
. also be used to specify a deadline, by which time a deadline milestone must te reached, as well as an
estimate of the amount of processing time that will be required to reach the deadline milestone.
(ArchOS may also make estimates about this processing time based on observations of earlier
executions.) Finally, the client may use the D=/ay primitive to mark the arrival of the process at the
deacline milestone referred to as the current deadline (while optionally defining the next deadline

milestone).

{time, date) = Delay(delaytime, deadline, util, diflag)

REALTIME delaytime
Time to be delayed starting at the present time, in microseconds. No delay if this
value is not positive; in this case it replies immediately.

REALTIME deadline
Elapsed time in microseconds from delayiime by which the deadline milestone
must be reached. If this value 1s not positive. the deadline remains unchunged.

REALTIME util Estimated execution time of this process in nicroseconds which will be required
betore the deadline is reached. If this value is 0 or less, the current processing
time estimate remains unchanged. The uc: of this valus by ArchGS 15 defined by
the policy mechanmsm (see Section 4.2.G).
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TIME time Current time of day in microseconds since midnight.
DATE date Julian date of this day.

BOOLEANdlitlag  Client sets to "TRUE" if this call is intended to mark the arrival of this process at
the milestone referred to as the current dead!line.

Cn Error: 1t the SetTimeDate primitive operation has not been executed since the system was

initialized. the date value returned is zero.

4.3.9.4 Alarm

The Alarm primitive waits until the specified time of day and date, then replies with the current time
and date. If the specified time has aiready passed, it replies immediately. (The accuracy of the day
and date is as described in the GetTimeDate primitive above.) Like the Delay primitive, the Alarm
primitive can aiso be used to specify a deadline, by which time a deadline milestone must be reached,
as well as an estimate of the amount of processing time required to reach the deadline milestone.
{ArchOS may also make estimates about this processing time based on observations of earlier
executions.) Finally, the client may use the Alarm primitive to mark the arrival of the process at the
deaaline milestone referred to as the current deadline (while optionaily defining the next deadline

milestone).

(time, date) = Alarm(alarmtime, deacdtine, util, dlflag)

REALTIME alarmtime
Time and Date at which processing of this process is requested to resume.

REALTIME deadline
Elapsed time in microseconds from delaytime by which the deadline milestone
must be reached. If this value is not positive, the deadline remains unchanged.

REALTIME util Estimated execution time of this process in microseconds which will be required
before the deadline is reached. If this value is 0. the current processing tune
estimate remains unchanged. The use of this value by ArchOS 1s defined by the
policy mechanism (see Section 4.2.6).

TIME time Current time of day in microseconds since midnight,

DATE date Julian date of this day.

BCOLEAM diflag  Client sets to "TRUE" if this cail i1s intended to mark the arrval of this process at
the milestone referred to as e current deadline.
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On Error: If the SetTimeDate primitive operation has not been executed since the system was

initialized, the date value returned is zero.

4.5.9.5 SetTimeDate
The SetTimeDate primitive sets the current absolute time and date. The date will be written into the
ArchOS data base and continually adjusted by ArchOS. ArchOS will maintain this information on a

best eftort basis. This primitive should be used only once, when the application is initiated.

val = SetTimeDate(time, date)

BOOLEAN vali TRUE if time and date were set; otherwise FALSE.
TIME time Value of current time of day in microseconds from midnight.
DATE date Julian date of this day.

On Error: If the time and date were already set by this primitive, they remain unchanged, and val is
setto "FALSE".

4.3.10 Policy Management

In ArchOS, a policy management is carried out by a policy set arobject and a set of policy modules.
The policy set arobject must exist in a distributed program and maintain a directory of the policy
modules. The actual policy will be implemented as a separate policy module in ArchOS. A set of
policy attributes are also maintained by the policy set arobject and ArchOS and will be to referred by
the policy modules.

A SetPolicy primitive specifies a new policy module to carry out a designated policy in the
applications's policy set arobject. If no SetPolicy primitive is invoked, ArchOS provides a defauit

policy module for the application program. A SetAttribute primitive sets an attribute into a new value.

val = SetPolicy(policy-name, policy-mcdule)
val = SetAttribute(attr-name, attr-value)
BOOLEAN val TRUE if the specified policy was set properly; otherwise FALSE.
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POLICY -NAME policy-name
The name of the policy to be set. (Well.known name to ArchOS, such as
SCHEDULE))

POLICY-MODULE policy-module
The name of the policy module which contains the policy.

ATTRIBUTE-NAME attr-name
The name of attribute to be set.

ATTRIBUTE-VALUE attr-value
The actual value for the attribute.

On Error: If there is no policy name or policy body, the SetPoiicy primitive fails and a "FALSE" will
be returned. The SetAttribute primitive fails if a specified attribute is not defined or inappropriate

values is assigned.

4.3.11 System Monitoring and Debugging Support

ArchOS provides system monitoring and debugging primitives in order to control the complexity of
application development in a distributed environment. A system monitoring facility can provide for
tracking the behavior of arbitrary arobjects or processes in the system. The communication activity

among arobjects can be aiso monitored by intercepting the selective message.

4.3.11.1 Freeze and Unfreeze

A FreezeAllApplications primitive stops the entire activities of caller’s application, and a FreezeNode
primitive halts all of the cleint's activities in a specific node. To resume client's application,

UnfreezeAllApplications or UnfreezeNode wiil be used.

A FreezeArobject primitive stops the execution of an arobject (i.e., all of its processes), and a
FreeseProcess primitives halts a specific process for inspection. An UnfreezeArobject and
UnfreezePracess primitive resumes a suspended arobject and process respectively. While a process
is in a frozen state, many of the factors used for making scheduling decisions can be selectively
ignored. For instance, a timeout value will be ignored by specifying a proper flag in the Freeze

primitive,




val = FreezeAllApplications()

val = UnFreezeAllApplications()

vai = FreezeNode(node-id)

val = UnfreezeNode(node-id)

val = FreezeArobject(arobj-id [, options})
val = UnfreezeArobject{arobj-id [, options])
val = FreezeProcess(pid{, opticns])

val = UnfreezeProcess(pid [, options])

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.
NQODE ID node-id  The node id indicates the actual node which wil be stopped.
AlD arobj-id The unique arobject id of an arobject instance.

PID pid The process id of the target process.

FREEZE-CPT options

The options indicate various selectable flags such as a timeout freeze/unfreeze
flag.

Cn Error: An error condition, such as non-existent node id, arobject id cr pid, wiil be noted, and
detailed information regarding the error status will be available by looking at the caller’s error biock.
If the target node, arobject, or process is already unfrozen, then the Unfreeze action will be ignored

and FALSE will be returned along with the appropriate error information is in the error block.

4.3.11.2 Fetch and Store Araobject and Process’ Status

A Fetch primitive inspects the status of a running or frozen arobject or process in terms of a set of
frozen values of private data objects. The specific state of the arcbject or process will be selected by
a data object id. The state includes not only the status of private variables, but also includes process

control information.

fval = FetchArobjectStatus(arobj-id, dataobj-id, buffer, size)
sval = StoreArobjectStatus(aroby-id, datacbj-id, bufter, size)
fvai = FetchProcessStatus(pid, datacbj-id, buffer size)
sval = StoreProcessStatus(pid, dataoby-id, butfer, size)

IMT fval The actual number of bytes which were fetched.
INT sval The actual number of hytes which were stored.

AlD erobj-id The unique id of the archiect instance.
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P1D pid The process id of the target process.

DATAQBJ-ID dataobj-id The dataobj-id indicates the private object or system control status of the
target arobject/process.

BUFFER *buffer A pointer to the buffer area for storing the returned data object value.

INT size The size indicates the buffer size in bytes.

On E-ror: An error condition, such as non-existent arobject id or pid, will be noted, and detailed
information regarding the error status will be available by logking at the caller's error block. Iif the
fetched data object is larger than the specified buffer size, then the content will be truncated. For the

storing operations, the data object size must be equal, otherwise the value will not te replaced.

4.3.11.3 Kill Arbitrary Arobject/Process

A GlobalKill primitive can destroy an arbitrary arobject or process in the system.

nproc = GlobalKillArobject(arobj-id [, options])
val = GlobalKillProcess(pid)

INT nproc The actual number of killed processes.

BOCLEAN val TRUE if the specilied process was killed; otherwise False.
AID arcbj-id The unique id of the arobject instance.

PI1D pid The pracess id of the target process.

GKILL-OP cptions The options indicate various control options. For example it can indicate
whether the caller stops every time after killing a single process or not.

On Error: An error condition, such as non-existent arobject id or pid, will be noted, and detaited
information regarding the error status will be available by looking at the caller's error block. If ihe
target arobject or process was already killed, then no action will be performed and "FALSE" will be

returned
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4.3.11.4 Monitor Message Communication Activities for Arobject/Process

The CaptureComm primitives czpture on-going communication messages from the specified
arobject or process. A CaptureCommArobject primitive captures all of the incoming request and
outgoing reply messages to a specified arobject and can select a target message based on the name
of the gperation. A CaptureCommProcess primitive captures all of the incoming messages and

outgoing reply messages for

The WatchComm primitives are similar to CaptureComm primitives except that all of the monitored

messages are duplicated, not captured.

val = CaptureCommArobject(arobj-id, commtype, requestor, opr)

val = CaptureCommProcess(pid, opr)

val = WatchCammArobject(arobj-id, commtype, requestor, opr)

val = WatchCommProcess(pid, opr)
BOOLEAN val TRUE it the monitaring action was initiated successfully; otherwise FALSE.
AlD arobj-id The unique id of the arobject instance.
PID pid The process id of the target process.

MSG-Q commtype This indicates either "REQUEST" or "REPLY" type.
AlD requestor The aid of the communicating arobject.
OPE-SELECTOR opr

The operation to be performed. The "opr" parameter can be a specific operation
name or "ANYOPR".

On Error: An error condition. such as non-existent arobjoct id or pid, will be noted, and detailed

information regarding the error status will be availabie by looking at the caller's error biock.

4.3.11.5 SetErrorBlock

A SetE-rorBlock primitive sets an error block in a process’s address space. A user error block
consists of a head pointer and a circular queue. The head pointer contains a ponter to . entry
which contains the latest error information in the circular queue. After the execution of thes primiave,

a client can access the detailed error information from the specified error block.

it should be noted that the Set&rrer8lock primitive will be executed at the process creation ime an

the library routine), so that the system default error block will br set autematically.




val = SetErrorStack(errblock, blocksize)

BOOLEAN val TRUE if the error block is set successfully; otherwise FALSE.

ERROR-BLOCK *errblock
The address of error block.

INT blocksize The size of error block in bytes.

On Error: If the address of the error biock is not valid, then the primitive fails and returns FALSE.

4.4 Rationale forthe ArchCS Client Interface

This chapter is organized in parallel with the organization of the first chapters of this document. A
rational approach to reading this chapter would be to remove this chapter from the document placing
it side by sice with the remaining sections of the document and then reading it in parallel with the

points made in the remaining sections.

4.4.1 Introduction

The preceding sections describe in some detail the specifications for the ArchOS client interface.
Most spec:ficaticn documents would end here having as completely as possible specified the
operations and the expected responses of the operating system. This specification. and others like it,
however. embody the results of a large number of decisions. This chapter is des.gned to describe the
rationale for the decisions made. Obvicusly not every decision can be completely descrived here. It's
entirely possible that there will be a number of important decisions which we will not describe, but our
attempt 3 6 doccribe all those trade-cffs that we have conscicusly made with regpect to the ogverall

functicns involved. 'We will try to identify alternative configurations thar we had discusced and will try

to identify the reasons for the particular decisions made.

4.4.2 ArchOS Computational Model

The raticnale for this section must perhaps be the most incomplete, since there are cf course. an
targe number of choices one can make for the computatonal model of a cimirtuted system
Cistributed systems have been built using models varying from systems buiit on a «tar conhguration
where one naode is completely in charge of the system and the others operate 'n 1 ~live reliionship

to autonomous systems; networks of multipie processors tied together And ommuni g 16 Lolve
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either a common problem or a large set of disjoint problems. The purpose of ArchOS is to build, as
we have stated, a distributed computer (i e.. a set of processing nodes which, operating together, act
as a single functional entity to solve a particular application problem) Thus we needed a

computaticnal model that would refiect the unity of purpose inherent in such a concept.

In aadition, we were concerned with the software engineering asgects of the application design. In
many existing real time s'ystems (uniprocessors as well as multiple processor systems) we find that
there is a strong tendency to design the application software along the lines of the operating system
interface. thus causing application partitioning to occur in the program at points that 4o not
correspond to the application probiem itseif. This effect is perhaps most clearly illustrated with a
standard Navy real time operating system in which each event must be handled by a user process
specifically designed to handle the event. Thus a single process may not handle both time and I/0
events, and sequential 1/0 gperations must be performed by separate process invocations, resulting
in a very disjoint (and non-moduiar) program structure. This creates a problem with the reliabiity and -
maintainability of the application system. Although ArchOS is not a production system, we expect
that eventually a production system will be built along the lines explored by this Archons research and
theretore ‘~e would fike to start with a computational mode! which will lend itself to good software
engineering practices. In today's technology we feit this included first ot all the need to define the
application as instantiations of abstract data types, but here we wanted to ensure that the abstract

data types we produced could exploit our distributed environment.

it is also true that in existing real time systems, and particularly in command and control systems
such as we are considering for our target applications, the programs are frequently very large ana are
constructad by large teams of programmers. We would like to have a computational mcdel which
would allow not only qocd software engineering practices with respect to small programs (i.e.
pragramming in the smatli), but also with respect to the problems of building software in the lurqe.
Hence. we have chosen a large primary entity for our computational model, the arobject. The cize of
the arobject and its clean interface lends itself to a reasonable organization of software engineers for
development purposes. In addition, the arobject to arobject interface from is sufficiently simple to
allow a scftwvare enqgineering organizational break-out along arobject lines. This i1s intended to
simglify not only the software develcpment of a highly modular application. but alsn the test nd

avalyation ghase of such a large system.
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4.4.2.1 Principal Components

Clearly, our chaoice for the top level principal component (i.e., the distributed program), i1s a natural
one in light of the fact that the Archons project is producing a distributed computer and an operating
system for that computer. We see the distributed program as being a single entity with respect to its
overall function, although it is made up of a number of much smaller components. We have chosen
not to be concerned with the execution of more than one distributed program, although we have not
prohibited it since more than one distributed program may need to be present during application
testing. It may be argued that we are merely playing with words here, and in a sense we are, but the
only distinction between a single distributed program and more than one 1s that resource allocation
priorities between arobjects in the distributed program are defined, but resource allocation priorities
between arobjects in different distributed programs cannot be determined. So it is possible to take
two programs which are disjcint and merge them together by defining these interrelationships.
Clearly, althcugh we do plan to he able to operate ArchQS in an environment with more that one
program running, we cannot cfaim that resource management decisions will be made fairly between

the two systems.

As 'we have stated, the arcbject is a distributed abstract data type. We have taken from the Ada
modz! the concept of a separated specification and body. Similarly, the specification séc!ion is the
only portion which 1s visible in the computational sense from one arobject to another. We see the
arobject as a distributed abstract data type which can be instantiated more than once in the

distributed system.

We should note that an instance need not be resident on a single node. We feit that tying the
instance of an arobject to a given node would render inflexible the potentiai use of an arobiject to
hancle a distributed abstract data type. The decision to limit objects to a single node has been made
in the design of a number of systems, such as the Eden system [Aimes 83}, \n which an Eject
{conceptually somewhat similar to an arobject) must be entirely resident on a single node. Obviously,
the decision to be resident on a cingle node has the advantage that a common address space can be
used for the entire object. We felt that not requiring the entire arobject address space be contammed
on a single node would give us great flexibility in applicaticn decign, so we deliberately chose not to

require such an organization.

By allow.ng more than one mstance of a given arnbject, thus 1o be baound to 4 singh: telerongea
name, wa have made it possible for 1 higher level arobject to completely handin a distrbuted abstriact
data type. One could enwision, for avample. a parhally rephcatod firectory ovisting on 1 nomber of

noces or possibly the cntire set of nodes in a distributed ystem. but beng handled by nale




A object distabuted over that network. The specification portion wentities, the onhire iterface to such
A group of arobjects by external arobjects, but processes within the arobect itsell can commumcite
with each othor across the vanous nodes regardless of the node boundanes  Obwviously, the
pertormance ol such a system must be taken into account and the arobject will bave options at it
mstantiation ime with respect to ensunng that particular subcomponents (processes, pnivate abstract
data type mnstances, and so on) are resident on common nodes or separate nodes as dictated by its

requirements.

The ArchoD file sy-am diustiates some of the arobect ifotima CHARACTERESTICS Wae have
chosen at this paint to make very simple our concept of tha file system by sunply using parmanont
nstances of lile ;wobyects [Almes 83]. Guch darobjects can be instantiated or kallod as roquaeed and the
set of their parmanent arobyect id’s than bocomes, in effoct, o directory of the files Homg kopt on thae
system  The opeariations of thege avohjects would provide the prumtives roquired to acoess, maodily,
update and delete the data withun the arobject. Wa would envision, however, that not l arobyects
would be permanently instantiated. In fact, quite a number of them might be mstantinted dunng the
aystem start.up operation and would die automatically when the prageam g termunated for any
reason, such as by powering off the nystem.  Thus, an arobect mstance might never have A

permanent form in emastence.

The arohject body is intendoed to implament the oparationa descrined i the arobpoct speoiication,
It »hould be noted that the private abstract data typas comprisa the only form of <harod data hetwaan
processas within an arabject  Thena are clansieal abetract datac types whieh contoun the dadaciteoff
and which can ba manipulated  only wvine the defined procedures n the abstiact dita type
I ncapsuiating atoone or pormanant data withun g prvate abstract data type altows controtled accoens
to shared data, ArchO35 will roquire that any proceduros whieh aceess atomue oot muet have o
transachion apen at the time of acecoss. Thus, ArchOD can control the Shanoeg of ths daba and when
the transaction s comamitted or abortod, AcchOr s wall cnsre thed the ateone data e, correctly foreod to
appropreate Stable storage Weo also note that because of owe arobnect dicdnbotion provicaans,, the
private data can be partitioned among multiple nodes, adthough each adnadial pocate aberact data
type mstantiation must be fully residont on o angle node o this way romote procedora o all
semantcs, including parametor paseaneg by vittae awall b veaod f the prrocescoecnat oo o ated a e
prvate procedure on the o noda 10 e intendod that debeang the presade abedeas S ot bypeeesan the
way ol adlow on to drec iy mplement Sl dedabated apphe ahons oo ottty sephe ated oo tor,

andon fact an ecampio of Sach anamplemontation can he Tound i Appendee Aol the, oo cment

At thes point, et as obeaerse that thore v no requned conrelatian hetzoon the cporatears o o
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arobject and the processes defined in an arobject body. It's anticipated that one or mere processes
in each arobject body will run continuously, pausing from time to time to check for the existence of an
operation request from another arobject. If such a request is not found, that process could block
awaiting another such request. Thus, the operation can be handled by any process within the
arobject, which allows us to have a set of processes with essentially identical function, handling
operations in any manner that the application desires. The binding between these_operations. then, is
late and is handled dynamically by the appropriate processes. {f, of course, the designer wants to
coupie the processes to the operations he need only specify his Accept parameters to identify which
operations he wishes to accept at each point and therefore he can bind them as early as he wishes. A
cost of this approach is that the potential implementation error of omitting the handling of some
operation in an arobject cannot be detected at system generation time, but we feel that the benefit in

terms of modularity and concurrency greatly outweighs this problem.

Processes within an arobject, of course, may communicate by using the Createfrocess primitive td
create grocesses and passing parameters at that time, or they may invoke operations within the
arobject using a Request primitive, using either operations from the spec.ification part, or private
operations from the body. These private operations are designed to make it possible to place
operaticn requests into the incoming queue from internal processing which are separable from those
placed by external arobjects. Obviously processes within an arcbject can also communicate via
shared data, using the private abstract data types. Any scheduling or mutual exclusion which must be

hand!ed with respect to this shared data wouid be handled within the abstract data types.

In addition._we have allowed far inclusion of private arobjects to be defined within the body of an
arobject. Such a private arobject will not be visible to external arobjects, and could be used for
partitioning operations within an abstract data type. This technique could be used for an
implementation of a partially replicated directory by placing each partition in 1ts own arcbyect and
using the cuter arobject to distribute the lookup and scheduling for the arobjects containing the data.
{See Appendix A Solution 2.)

One may, of course, guestion our contention that these processes are lightweight as we have
defined th.am; that their scheduling overhead will be smali relative to the speed of the machine. This
is certainiy our intention. but we will have to weigh this against the implementation requirements to
obtain the nterfaces we need. It s cur intention, however, to minimize the state raquired to be
constructed in the scheduting of a process. In addition, we envision eventually building upeecial
purpose hardware for hosting ArchQZ. one abjective of which mit be to cptimize the creation of

processes and the resuiting context swap overhead.




4.4.2.2 Communication Facilities

4.4.2.2.1 Rationale for Accept/Request Rendezvous Mechanism

The Request/Accept/Reply primitives were selected to provide the means of communication
among arobjects. These primitives allow communicating arobjects to rendezvous, rather than

providing a master/slave relationship for all communications.

The master/slave paradigm was rejected because it seemed too restrictive. Consider that a major
goal of ArchQOS is to support decentralized resource management by collections of resource
managers, which negotiate to reach a consensus regarding a particular management decision. The
communications involved in carrying out negotiations among resource managers are not

master/slave in nature; they are better characterized as communications among peers.

The Request/Accept rendezvous captured this sense of peer communication--in order for
communication to take place, both parties involved must explicitly act; the requestor cannot force a

process o perform an Accept for a particular invocation.

Both blocking and non-blocking request primitives are provided to give the client a very flexible

communication facility.

4.4.2.2.2 Rationale for Broadcast Request Capability (RequestAll Primitive)
The RequestAll primitive provides the capability to broadcast a request to muitiple arcbjects. This
feature of the inter-arobject communication facility was very directly shaped by the anticipated

structure of ArchOS' internal distributed data entities.

It is assumed that the ArchQOS operating system will make use of various data objects that must be
highly reliable and available. Such objects can be constructed by means of data replication and
distrisuticn throughcut the cperating system, with appropriate use of the ArchOS transaction
facilities. !n addition, ArchOS will almost certainly contain multiple instances of various servers (for
instance, file servers anc name servers). If data is either partially or completely replicated at muitiple
locations or if replicated servers are available at multipie locations, it seems natural to use broadcasts
as a common mode of communication invalving these replicated entities. For example. a new entry in
a name table might be broadcast to all of the arobjects that contain a portion of that name table. Each

partially redundant table fragment could then be updated appropriately.
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4.4.2.2.3 Rationale for Intra-Arobject Request Capabiiity

Despite the number of communication primitives provided by ArchQOS, we wanted to keep the model
of communication among entities as uniform as possible. As a consequence, ArchQOS does not
support a direct process-to-process communication capability. All processes communicate only with
arobjects, by means of the Request/Accept mechanism, even when a process wishes to
communicate with another process in the same arobject. (This restriction is a consequence of the
fact that we do not want the user of an arobject to know about the implementation of another arobject
{including the number of processes and the process id's in that other arcbject). The arobject
operation invoker can only see the specification, not the implementation. of the arobject to be
invoked. Therefore, process-to-process communication between two distinct arobject instances is
not possible. And in the interests of uniformity and simplicity, we also decided not to allow such

communications to take place within a single arobject instance.)

In order to allow processes in a single arobject to perform additional operations, beyond than those
that are visible to other arobjects, it was necessary to provide an additional set of operations that can
only be invoked by the processes in that arobject. These operations are called the private operations

of the arobject, and they are invoked in exactly the same manner as operations on othar arobjects.

4.4.2.2.4 Rationale for Invacation Parameter Passing

ArchGS Request parameters are passed to the receiving arobject using call-by-value semantics.

This is the only reasonable way to pass parameters since arobjects do not share any adcdress space.

The only exception to this rule comes in the case of an invocation by a process of a private
operation. In that case, the processes can have intersecting address spaces cue to the presence of
shared private data (in private abstract data type instances) in the arobject. As a result, it is possible
for.such Request and Reply messages to contain references to common ohjects (for example, the

names of private data type instances).

4.4.2.3 System Load and Initialization

The tradeoffs involved in this section are fairly simple. We expect that the system would be loadad
in a conventional manner from external storage {e.g. disk) associated with some of the nodes in the
system, and we expect that nodes not containing local external storage would obtain load data from
neighboring nodes. We expect this to he an internal ArchOS design decision. which will therefore be

specified at a later time.

The question to be answered in this section is how the application program 'vould be inttinlized

once ArchQS is fully initialized and has determined its own status. We have taken the position at this
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point that an application program will do this by the definition of a unique application arobject (the
Root arobject), which ArchOS will expect to find on one or more nodes. This arobject will then
determine its own status, including finding out if other copies of itself exist (or insuring its own
uniqueness If needed). This arobject will then Create the other arobjects needed to bring up the

application program.

This is a simple approéch which has been planned to maximize application program flexibility at

initialization time, and to eliminate the need for operator intervention other than that required by the

application itself.

4.4.2.4 Transactions

ArchOS is a highly decentralized, real time operating system designed to support highly
decentralized, real time applications. In fact, the operating system itself can be viewed as a highly
decentralized, real time application built on top of the kernel support facilities. We have attempted to -
view ArchCS in this way at various times, and that has led us to view the arobject as a computational
entity that we would use within ArchQOS (insofar as possible), as well as at the application level. While
specifying the services to be provided by ArchOS and its behavior under all conditions, it became
apparent that ArchOS' internal system data objects should possess several characteristics. In

particular, the following characteristics were desired:

e Cften, several different arobjects will operate on specific data items (directories, queues,
and so on). These shared data objects will reside in an arobject, so access can be
coordinated by the normal arobject communication facilities (particularly Accept
primitives), as well as by means of customized code in the arobject’s processes. But, as
the following points will illustrate, a higher level coordination will often be desirable.

e At times, it is necessary to change several different, yet related, data items as a unit (for
example, updating all of the copies of an entry in a partially replicated directory or moving
ar element from one queue to another). If such atomic updates could be performed, then
it would be much easier to transform one consistent state of a set of data items to another
consistent state.

e Some duta items must be permanent; that is, their state should be reliably maintained for
the {ife of the system.

These attributes could all be provided by ArchOS by means of the communication facilities in
conjunction with custom-written code and appropnately defined locks ar semaphores and cntical
regions. However, we desired a more structured approach. All of the above capabiities are
supported by traditional database transaction systems [Gray 77]. In fact, such trangaction systems
can provide even more powerful properties (specifically, failure atomicity and/or senalizability). it

was felt that this additional structure wauld ease the programmer’s burden, while also decreasing the
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chances ‘or programming errors, by making modular programming more natural. (Indeed, the use ot
compound transactions promotes modular construction of programs by causing the transaction
author to think in terms of consistency preserving transformations on sets of dtomic data objects,
thereby causing the program’'s data to be partitioned into a number of modular atomic data sets.
Also, transaction systems in general can aid the programmer in another important way: the
processing carried out in qrder to commit or abort a transaction can handle a great deat of lock-
- related bookkeeping, even though the programmer must expiicitly obtain locks on all of the atomic
data items. This frees the programmer to consider the correct behavior of the transactions being
written, without giving unnecessary consideration to interactions with other transactions in the
system. However, this is not to say that the programmer does not have to be concerned at all with
locks and locking protocols; rather, it is intended to point out one aspect of lock management that the
programmer does not have to handle. Using the current ArchOS locking protccols, there are stilf a
number of decisions concerning locks that the programmer must make--for instance, whether to use
a discrete locking protocol or a tree locking protocol, how to organize the locks in a lock tree. what
data items are associated with a given lock, and so on. Section 4.4.2.7 deals with some of these

issues in more detail.)

The above discussion explains why a transaction facility was included for use within ArchOS. Since
the ArchGS clients are also interested in producing highly decentralized, real time programs, it was

feit that it was appropriate to extend these primitives to the clients as well.

Ot cource, there are arguments against using a transaction facility within an operating system. Cne
majcr objection is that system performance could te greatly reduced (as compared to a system that
does not use a low-level transaction facility). This is due to the fact that occasionaily the system will
have to suspend the processing of a specific transaction while data is being copied from main
memory to a (virtually) permanent medium; there will aiso be overhead associated with the initiation
and conclusion of each transaction. (The impact of mutual exciusion on system performance is not
mentioned in the preceding discussion since some form of mutual exclusion must be present in any

system containing shared data objects, whether it includes transactions or not.)

it seems inevitable that a performance pehaity will be incurred by the use of transactions, but it is
hoped that the gains in the area of data permanence, system consistency, high avaiability, and
rehability wil be worth the price. However, three other decisions were made to addrass the problem

of pertormance losses due to the use of transactions in ArchOS;

e not all processing must take place within transactions.
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e only specifically designated data items would be defined as atomic -that is, only those
items would be permanent, failure atomic, and so forth. (This decision forces the
arobject writer to explicitly indicate which data items must be atomic and has a great
influence on the types of steps that appear within a transaction. For instance, it v uld be
a questionable. if not wrong, programming practice to use non-atomic vanables to pass
values from one nested transaction to another. An example iilustrating this point is
shown in Section 4.4.3.5.)

e 2 new type of transaction, the compound transaction, is included to increase the potential
cdegree of system concurrency.

4.4.2.5 Rationale for the inclusion of Compound Transactions

Compound transactions addressed two great concerns regarding the use of transactions, both
within ArchOS and by ArchQS clients. One of these concerns, performance, has already been

mentioned. Since ArchOS allows transactions to be nested arbitrarily (interleaving elementary and

compound transactions as desired), the use of some compound transactions can increase system
concurrency. This is due to the fact that compound transactions release all of the locks that they, or
any of t* r child transactions, have set at the completion of the execution of the compound
transaction. Thus, the resources that are controlied by these locks are often free to be used by other

processes prior to the completion of all of the processing associated with a given transaction.

The second concern addressed by compound transactions in ArchOS is that of system integrity and
liveliness. In traditional database systems which support nested transactions, all of the locks
obtained by child (nested) transactions are passed to their parent transactions and kept until the
comp'etion of the highest level transaction (at which time the transaction is either aborted or
committed). This approach was not suitable for ArchOS., where most of the operating system
primitives are actually expected to be implemented using transactions. |f a client transaction
contained operating system primitive calls which were implemented using traditional nested
transachons, then on the completion of the primitive call, the client transaction wouid receive any
iocks that the system primitive transaction(s) had obtained for system resources. The client could
subseguently attemnpt to manipulate the system resource or could simply hoid the lock on the system
resource for an arbitrarily long time. Both of these possibilities were disturting; but, both were aiso
preventable by proper use of compound transactions. |f each ArchOS primitive is nct just a
transaction, but rather a comp.ound transaction, then no locks on system resources will ever be
returned to the client transaction. In this way, comnound transactions are used in ArchOS to build a

“firewall” between the operating system and the client.

Ct course. compound transactions have some disadvantagss associated with them as well. For

instance, it is not possible to simply change an artatrary eleimentary trancachon to a compound
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transaction without consideraticn of recovery issues. (Elementary transactions in ArchOS
correspond to traditional ne;sted transactions in database systems.) During the course of its
execution, each compound transaction may inivcke a number of arobject operations and/or operating
system primitives. At the completion of the execution of the compound transaction, all of the locks
that have been obtained during transaction processing are released (despite the fact that the
compound transaction may be nested within another transaction). In the event that a higher-level
transaction aborts after the compound transaction has committed, it is not possible to guarantee that
all of the operations performed by the compound transaction can be properly "undone” (in the sense
of traditional nested transactions). For instance, it is possible that another transaction has read, and
acted upon, data that represented the outcome of the compound transaction after it had committed
{and thereby released all of its locks), but prior to the execution of its compensation action. Such a
situation could never arise in a traditional transaction system, but it certainly could happen in the

ArchCS transaction system.

The ArchOS compensation action for a committed compound transaction consists, in part, of the
execution of a set of compensation operations associated with the arobject operation invocations and
operating system primitive invocations made during the course of execution of the compound
transaction. ‘While these compensation operations may attempt to approximate the effects of the
traditional transaction "undo"” operations, they cannot guarantee that the compensation will result in
the same system state as would have resuited if only nested elementary transactions been used.
Rather, the system state is transformed to a state that is equivalent to the state that would have
resulted if all of the other concurrent transactions in the system had been processed in the absence
of the aborted compound transaction. (See Section 4.2.4.1 for additional discussion of this point.) If
such compensation operations can be constructed and the weaker guarantees concerning the
system state in the case of the abortion of a higher-level transaction are acceptable to a transaction
author, then comnound transactions can be used for a given application; however, if these conditions

are not sufficient, then elementary transactions must be used.

A few examples can be used to demonstrate cases in which compound transactions are or are not

appropriate based on the ability of compensation actions to provide the required semantics.

First, consider a case in which compound transactions are appropriate: the dequeue operation of a
weak queue. In such a queue, the first-in-tirst-out ordering of elements in a strong queue is
weakened. it 1s acceptabie to alter the order in which queue elements are remaoved from the queue by
the dequeuie operation. As a result, it is possible to dequeue elements Ly means of a dequeue

operation based on a compound transaction. This operation simply returns the head slement of the
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queue and then releases any locks obtained in the process of dequeuing that element.  The
compensation operation associated with this dequeue operation is also quite simple: the element that
was previously dequeued is returned to the head of the queue. Because of the semantics of tne weak
queue, these operations are acceptable. It i1s unimportant whether or not any other degueue
operations occurred during the interval between an element being dequeued and subsequently being

requeued because a strict ordering of the queue elements is not required.

Second. consider a case in which a compound transaction is inappropriate: the enqueue operation
of a weak queue. In this case, there is a visibility problem--that is, if compound transactions were
used to implement the enqueue operation on a weak queue, it would be possible for other
transacticns to view the queue in states that represent partial results of computations that are
subsequently aborted. As a result of viewing such states, it is possible that those transactions will
alter the state in an inappropriate way. This situation is illustrated by the use of a compound
transaction to implement the enqueue operation for a weak queue. Such an enqueue operation
would take an element passed to it and append it to the taii of the queue, releasing any locks obtained
at the completion of the operation. The most obvious compensation operation for this enqueue
operation woulid locate the desired element in the queue and remove it, thereby attempting to make it
appear as though it had rnever been there. However, this is not a sufficient compensation action since
it is possible that an element may be enqueued and later dequeued before the compensation action is
able to be executed. In such a situation, the only way to provide the required semantics for the weak
queue i1s to abort the transaction that dequeued the element. Yet this presents the possibility of
cascacing aborts, and ArchOS cannot permit cascading aborts to occur. Due to this visibility
protblem, compound transactions are not appropriate for the implementation of the enqueue

operation.

Another disadvantage associated with the use of the compound transaction is aiso refated to the
compensation mechanism: programmers must explicitly write the compensation aperations
carresponding to the arobject aperations for a given arobject. The concept of this type of transaction
is quite new, and we are not yet certain about the nature of the actions to be performed by a typical
compensation routine. (In fact, there are many issues that we do not fully understand with respect to
compound transactions: the number and variety of applications for compound transactions. the
amount of work required to define appropnate compensation actions, the form such actions should
take, the impact of compensation acticns on the ahility ot ArchQS to make guarantees about real time
behavior, the level of cancurrency that can be achieved using compound transactions, and 50 on.)
So at this pomnt, we have dacided that ArchQS will imbally support only programmer coted

compensation actions. (This should he contrasted with the case of traditional nested transachon
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database systems or, equivalently, nested ArchQOS elementary transactions. In these cases, all of the
“undo” or "redo” types of operations are determined and performed by the transaction faciiity for any
user-written transaction.) However, ArchOS will provide support to automatically compose these
basic compensation actions in order to facilitate the construction of arbitrary tigher-level
transactions {either compound or elementary transactions) that invoke arobject operations based on

inwer-level compouiic transactions.

4.4.2.6 Rationale for the Transaction Syntax

Two potential formats were considered for the syntactic definition of transactions: an in-iine format
(in which the transaction would be delimited in the body of the surrounding text oy some keywords)
and a procedural format (in which a transaction was defined as a separate entity--such as a function

or procedure--and was "called” by the transaction initiator).

There was no overwhelming reason for choosing one format over the other. This issue seemed to
be largely one of stylistic preference, not performance or functionality. Assuming that a typical
transaction is relatively shart, the in-line format has the advantage of showing the actual transaction
steps to a reader of the code; on the other hand. the procedural format could be parameterized in the
hope of avoiding the'duglication of definitions that might occur with the in-line format. (This seems to
paraliei the arguments for using macros or subroutines in a given application.) Our preference was to

use the in-line format since it appeared to be more readable and compact.

Once the determination to use an in-line format was made, we needed to pick a specific format. We
felt strongly that transactions should not span multiple arobjects--that is, a transaction should not be
initiated by one arobject and later compteted by another arobject. Since the arcbject is the basic unit
of program construction, transactions that span arobjects hardly seem to promote modular program
construction techniques. in fact, we feit that a transaction should begin and end in a single process.
The reaconing for this decision is a simpie exiension of the argurent previously given for requiring
the transaction to beqgin and end in a single arobject. The ET{...} and CT{...} syntuctic structures
selected for use in ArchOS force a transaction to begin and end in a single prc _ess, while other
possible structures (such as arbitrarily placed BeginTransaction and EndTransaction delimiters) did

not.

4.4.2.7 Rationale for Lock Support Decisions
Several important cecisions were made with respect to the support to be provided to the chient in
terms ¢. obtaining locks on shared data objects. This portion of the raticnale «all deal aith three of

the maost important dectsions: (1) the decision to sugport Loth 1 diuerete locimg crotocol and o tree
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locking protocol [Silberschatz 80]; (2) the decision that the client must explicitly set locks . and (3) the

decision to ailow the client to exphcitly release locks within a transaction.

ArchCS supports both discrete locks and tree locks because we feel that each type of lock
addresses a different set of client needs, and neither type alone addresses all of these needs. For
instance. the tree lock is supported because it is able to make an important guarantee about the
nature of the computatior;s that use exclusively tree locks from a single lock tree: if a computation, C,
obeys the tree lock accessing rules and if all of the other computations that obtain locks in that tree

release them in a finite length of time, then computation C will also complete in finite time without the

occurance of deadlocks. We believe that the guarantee that a computation will take place without the

possibility of a deadlock is extremely important and justifies the support of tree locks in ArchOS.

However, tree locks cannot be the only locking mechanism in ArchOS. In defining the tree structure
to be used in connection with tree locks, the client is explicitly specifying the legal access patterns for
lccks in the tree. This may be a straightforward process when the client is dealing with a small
coilection of related data items, but appears to be intractable when deating with all of the locks in the
system. (If it were desired to guarantee that the entire system would be deadlock-free, then it would
be necessary to place all of the locks in the system in a single lock tree. Specilying a rational tree
structure for such a iarge number aof often loosely related items seems impossible.) This leads us to
support discrete locks as well as tree locks. (Actually, ArchOS will provide support for multiple lock

trees cefined by the client, as necessary.)

In tact. we could builld ArchCS without discrete locks, using a forest of tree locks. Yet. once it was
decided that we could not include all of the locks in a single monolithic tree, it ceemed to be
~orthwhile to allow the more traditional discrete lock to be used as well. Presenting the view to the
chent that each discrete lock is actually a degenerate (single node) tree lock seemod to be
unnecessar:!ly complicated. (Although that may te the manner in which discrete lccks are actually

‘mplemented.)

The next major point to be discussed is the justification for the rule that a client must explicitly
obtamn all of the locks needed to perform a given computation. This decision was reached for two
reasons. First, a system that would handle the acquisition of locks automatically would be at or
be/and the state-of-the-art for database systems. Since this 1s not -elated to ArchOS' primea research
gouis. we would prefer not to expend the eifort that such a capability would require. Sccond. even if
~e had an automatic lock acquisition facility, it ceems inevitable that the system would be more prone

to deadlocks than if the client explicitly requested the locks. This is due to the fact thot the: Lutomalic
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system would often have to upgrade a "read" lock to a “"write” lock curing the course of a
transaction. The attempt to upgrade the lock could lead to a deadlock situation, which might have
been avoided if a "write” lock had been requested in the first place. Although the automatic system
would have no way of knowing that a "write” lock would eventually be needed. the client who wrote

the program would indeed have known and could have avoided the situation in many cases.

The final major point to be addressed concerning locks is the use of the Releaselock primitive--

specifically, a justification for the use of this primitive within a transaction.

Aithough the use of the Releaselock pnmitive within a transaction can violate the locking protocals
of the transaction system, it can also be used in a manner consistent with those rules. !n gparticular,
tree locks <an be released during the course of a transaction if they are not needed for the
transaction computation. For example, it a given tree lock were obtained only to lock some of its
descendants in the tree, then that lock could be released after the locks on the descendants have
been obtained, with no undesirable effects. Also, it is possible that explicit releasing cf locks might be

useful in taking full advantage of Sha's notion of setwise serialiability [Sha 84].

A few other minor items concerning locking issues should be mentioned. The syntax chosen for
declaring locks in an arobject is similar to the syntax used in declaring variables (with types
DISCRETE - LOCK - ID or TREE - LOCK - 1D). However, the tree structure of the tree locks is defined

dynamicalily by means of the CreateLock and DeleteLock primitives.

Also. we have not yet made a final decision concarning the "strength™ of the connection hetween a
lock and the data item it is associated with. it locks are closely associated with the data item, then the
system can perform a number of checks to guarantee that the locks aie being used properly.
However 1if this bond is weaker, then the client has more freedom to associate locks with more
general or more absitiact data items or even facilities. (For axample. the client could cbtain a lock on
an arbitrary character Ltring which may not correspend to any 2ata item at the time the lock s
obtained. This capability might be more difficuit to provide if locks are tightly associated onty with
existent data items.) In this case, though, the client must use a programming convention in order to
guarantee that the locks are used properly in accessing the data. These two examgles are the end
pomnts of a range of passible lock strengths. We have yet to decide where in this range of possibiities

the ArchCS supported 'ocks should lie.

Firatly ArchOS does nrovide a client-gpecified timeout parameter to tound the exerution thne of a

qwven transaction. This provides a crud? facility to prevent deadlocks from tymnrg ap the transacihon
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tor an arbitrarily long time. ArchOS will not necessarily detect a deadlock condition for the ctient; the
ultimate responsibiity for handling the possibility of a deadlock belongs to the client. However,
ArchOS will provide some deadlock detection facilities. The eract nature of these facilities has not
yet been fully determined, but some candidate facilities are: ArchOS will detect all deadlock cycles of
length two (or perhaps three), or ArchQS will detect ait deadlocks that involve the resources of only a
single node. The level ot deadlock detection service provided will be strongly influenced by the cost
of providing that service. Since we will not be able to detect all deadlock conditions, we will only
perform that deadlock analysis that is relatively inexpensive, while still capable of detecting some of
the mcre common situations. In the event that a deadlock 1s detected, ArchCS will abort transactions

as required in order to allow processing to continue without deadlock.

4.4.2.8 Rationale for Inclusion of Critical Regions in ArchQS

ArchQOS supports critical regions to assure exclusive access to shured data items within a single
arobject by means of the Region primitive. However, it may be noted that ArchCS also supgorts
another. more secure, method of obtaining mutually exclusive access to shared data vems: the

transaction.

Since ArchQOS is already committed to providing a transaction facility, it may not be obvious why
critical regions are also supported. In fact, the main reason is that critical regions do not require atl of
the powerful facilities that a transaction supplies, whether they are needed or not. It was dec:ded that
no matter how elficient the ArchOS transaction facility was, it would still probably be slower than a
mechanism that only provides a small fraction of the power of a transaction (even a4 compound
transaction, which would typically involve less processing than an etementary ‘ransacton). As a
result, the critical region can be used to provide a simple mutual exclusion mechanism that wiil citen
be needed when accessing shared data objects for which the faiure atomic. permancnt. or

serializable propertics of transactions are not required.

4.4.2.9 Rationale for Transaction Nesting Rules

ArchGCS allows both elementary ard compound transactions to be nested arbitranly within a
transaction. Such interleavings are necessary for proper system behavior. This will be demnnstrated

by a number of examples that point out the necessity of each type of nesting:

¢ !n order to provice the traditional database nested transaction view. 1t s necessary to
allow the nesting of aelementary transactions within elementary transactons

o Nhere failure ntomicity (the progerty by which aither ail of the actrons of A trinsachor are
performed or ncne are) and visihility i1ssues (a5 mentioned 1in Section 44 2 5 ire not of
prime concern. system perfurmance can be maximized by ~mploying v i ! cemucund
transactions riather than nested «lementary transactions.
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e In cases where compensate routines can provide simdar functionality to more traditional
"undo” operations on locked data items (for example, consider the case of compensating
for the allocation of a new page of memory from the operating system), it would be
advantageous for performance reasons to use compound transactions nested within
elementary transactions.

¢ Consider the case in which a compound transaction must perform a certain computation.
It is certainly reasonabie to believe that it might often be carried out by a set of nested
elementary transactions’ thereby giving all of the automatic failure recovery and visibility
features of nested elementary transactions to the desired computation. It is of no interest
to the lower nested levels that their locks will all be reieased as socon as the compound
transaction commits (or aborts). (Note that the compound transaction in this case acts a
great deal like the top-level transaction of a set of nested elementary transactions.)

Since all of these cases seemed to dbe useful, it was established that ArchOS transactions ccuid be

constructed by any arbitrary mixture of the two types of transactions.

Such mixtures of the two transaction types can be quite useful in selectively passing the locks of
scme chiid transactions to a parent transaction while releasing those of other child transactions. This
ability to selectively pass locks is required since the ArchOS primitives will usually contain compound
transacticns (in order to prevent passing system resource locks to clients), yet client elementary
transactions may be built by making Requests for services from other client arobjects. {f a Request
were simply a compound transaction, and the computation that resulted trom tne Request execution
were cansidered o be a child of the Request transaction, then none of the requestee’s locks would be

returned to the requestor {client) due to the nature of a compound transaction.

A mixture of elementary and compound transactions can be used in the above example to pass the
requestcr the requestee’s locks while releasing the system resource locks at the compigtion of the
Request prnmitive execution. (See Figure 4-4) By implementing the Request prunitive as an
elementary t~ansaction with several child transactions. the desired effect can be achieved. The locks
ctiained Ly the r‘equestee‘s computation are automatically passed back o the reguastsrn and,
system actions (Req1 and Reg2 in the figure) are encapsulated within chitd compound hansactions.,
s0 the requestor will not receive any of the system resgurce iocks (since they are not returnad to the

Request primitive’s highest level elementary transaction.)

4.4.2.10 Rationale tor Inclusion of the AbortincompleteTransaction Primitive
The 2raoretincompleteTransact:ion primitive provides a unigne capabiity i handalng respanses from

chud rransactions.

Tz understand how such a primitive facility could be used, nonsider the Sllowing otu hons of a
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Client Transaction (ET or CT)

lReq uest
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Req1 (CT) \J(ET)  Rea2(CT)

O O

Accept (CT) Requestee Reply (CT)
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Figure 4-4: Selective Lock Passing by the Request Primitive
transaction performs a RequestAll invocation for some operation on all of the arobject instances of a
certain type, then each invocation will be serviced and appropriate replies will be returned. Also,
suppose that while servicing the request, each arobiect instance performs some transaction
processing. And finally. suppose that the reguestor is only interasted in the first reply to the
RequestAll invocation. {Although this scenarno may sound contrived, it is not. This is exactly the
manner in which a client would attempt to obtain the shortest response time from a cet of arobjects.
all of which are capable of servicing the client's request. The client would simply request that all of
the arobjects provide the required service (by means of the RequestAil primitive) and then wait until
the first reply 1s obtained. Since, at that paoint, the actions of the rest of the sarvers ar: no longer of

interest to the requestor, their actions can be terminated )

After receiving the first reply, the client could not correctly proceed without the




AbortincompleteTransaction primitive. This 1s due to the fact that the computations carried out by the
arobject instances that respond (or would respond) after the first should be aborted (including the
transaction processing that they are carrying out). However, the client has no way of knowing the
identity of those arobject instances that received the request since the RequestAll primitive was used
and therefore the exact identities of the acceptors were never explicitly known by the requestor. If the
client aborts all of the processing associated with that RequestAill primitive, then the work done by the
first replier will be lost as well. The AbortincompieteTransaction primitive handles this case since it
allows ArchOS to handle all of the bookkeeping associated with the identities of the acceptors and as

well as performing the necessary selective aborts.

Client Transaction (ET or CT)

RequestAll (ET)

Cummy1 (ET) Dummy2 (ET) Dummy3 (ET)

\ N /\(\\
) / !
’ . \\\) \\_,'/ \\,_//
Accept Comp. Reply Accept Comp. Reply Accept Comp. Regly

Figure 4-5: RequestAll Transaction Tree

Figure 4-5 shows the transaction tree structure associated with the Regues:A primiive  This fiqure
will tlustrate the actions taken by the Abortincumpietelransaciion pnmitive with respect to the
transaction tree. The RcoquestAll transaction has several children transactions, ane for each of the

accepters of the reguest for service. At the completion of each server’'s e, the subtran-.action
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associated with that server is conciuded (committed). The AbortincompleteTransaction primitive
aborts all of the child transactions of the named transaction (RequestAil, in this case) that have not
yet reached that commit point. In this way, the work that has been done will be maintained, while the

incomplete work will be aborted.

This primitive has proven quite useful in example programs, including the partially replicated

distributed directory exaﬁple contained in Appendix A of this document.

4.4.2.11 Real-Time Facilities
ArchCS is designed to support user-defined real time deadlines, but its support for real-time
systems citfers fundamentally from other real-time operating systems. There are, of ccurse, many

existing real-time systems being used in a number of environments including the military, process

control, and robotics. It is interesting, however, to observe some of the characteristics found in the
operating systems (or executives, as they are sometimes called when a full cperating system is not "
implemented) designed for these systems which provide support for real-time operation. Two primary

characteristics can be described:

e These operating systems are kept simple, with minimal overhead, but also with minimal
function.  Virtual storage is almost never provided; file systems are usually either
extremaly limited or non-existent. /O support is kept to an absolute minimum,
Scheduling is almost always provided by some combination of FIFO (for message
handling), priority ordering, or round-robin, with the choice made arbitrarily by the
gperating system.

e Simple support for management of a hardware real-time clock is provided, with facilities
for periodic process scheduling based on the clock, and timed delay primitives.

Conspicuously missing from these systems at the operating system levei is any specific support for
managing user-defined deadlines, even though meeting such deadlines is the primary characteristic
cf real-time application requirements. Instead, these systems are designed to meet their deadlinas hy
ensunng that the available resources significantly exceed the actual user requirements, and the
implementation 1s followed by an extensive testing period to verify that this assumption is maintained
uncer "normal” loads. In priority-driven systems, deadlines are handled by assigning a high fixed
priority to processes with critical deadlines, disregarding the resulting impact to less éritical
deadlines.

The ArchCS primitives have been designed to provide the information which will enable the
scheculing tunction to sequence processes according to therr deadlines, ensuring that all deadlines
re metin each node as long ag there are sutficient resources to meet them. Tochniques for handling

such deardlines are well xnown, given sufficient resources.
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An important ArchOS research area, however. is the handling of these deadlines when there are
insufficient resources to handle ali of them. User policies defining potential objective functions for
these cases will be accepted, and a best effort will be made to implement these policies when

resources are insufficient. Essentially two primary decisions are required in these cases:

& Which deadlines should be missed, and by how much? That is, should some deadlines
take precedence, or should missed deadlines be fairly distributed? Should some
processes be aborted if their deadlines cannot be met?

e At what point should some processes be migrated to other nodes? I[f so, how many
processes, and which processes should be migrated?

4.4.2.12 Policy Definitions

We feit from the outset that an application running under ArchOS would need a great deal of
flexibility in order to meet its specifications. Therefore, we decided to support application-defined
policies to manage certain resources. At this point, we have limited the policy definition capability to
two specific management tasks: process scheduling (initially on a single node) and process
reconfiguration (process migration or relocation) among nodes. This decision was made because we
did not feel that there was a global programming paradigm involving application-defined policies that
we wished to impose on the application program writer; currently, we treat each facility on its own
merits with respect to the use of application-defined policies. We do have an overall framewaork within
ArchOS for the support of application-defined policies, but we would like to demonstrate the
suitability of our ideas on a few test cases before spréading the approach throughout the entire
system.

In addition, process scheduling and process reconfiguration in a distributed system are of particular
interest to the real-time application programmer, who is often in the best pasition to determine the
high-level scheduling policies of the system. This is due to the fact that the actuai deadline
constraints that the system must satisty are imposed by the external envirgnment and the nature of
the application processing. _@y allowing the application programmer to define the scheduling policy. it
is expected that the system will better be able to carry out the process scheduling task with these
factors ir mind, particularly in situations where there are insufficient processing resources to carry

out all of the applications functions. ‘

Another area of interest within the Archons project concerning the uce of policy within a facility is
the separation of the policy and mechanism portions of the facility. This work is similar in spirit (if not
in ‘mplementation) to the policy/mechanism separation work done for the Hydra systeis [Wulf 8t].

Haowever. fur the most part, ArchOS will not focus much attention or that particular aspect of policy
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definition for a faciity. This is partially due to the fact that, in many cases, it is very difficult to draw
the line between those protions of a facility that are policies and those that are mechanisms. And
since drawing that line is nat a central focus of the ArchOS development effort. we feel that we should
not spend a great deal of time pursuing this task. (We will indeed attempt to separate policy and

mechanism insofar as paossible in ArchOS, but we will not push this idea very hard.)

Once we had decided to provide support for application-defined facility policies and to make an
attempt to separate policy and mechanism in the implementation of the facility, there were still a

number of open questions.

First, we recognized that there is a spectrum of choices in the amount of flexibility to be provided to
the application writer. One approach to the specification of a facility’s services would invoive: (1)

determining the set of all of the palicies that might ever be used to manage the facility, (2) selecting a

set of mechanisms that can be combined in various ways by that set of policies to provide any of the
previously identified facilities, and (3) making those mechanisms available to the application
programmer to construct the facility. Whiie this scheme allows the application writer a great deal of
freedom, it is passible that it might be very difficult to actually carry out the first two steps listed above.
A seccnd approach limits the options of the application writer (and so might be more secure and
reliable from the operating system’s point of view) while still allowing the client to select the policy to
be used in managing a facility. In this case, the application programmer would be able to select the
facility policy from a limited menu of policies. {Essentially, the programmer has been given a policy
mode switch.) The programmer would not necessarily even know the mechanisms that actuaily
underlie the policies in this case. For process scheduling when processing resources are not
sufficient to meet processing demands, we have chosen a scheme that lies somewhere between the
extreme cases listed above. We intend to design a palicy scheduling facility that has a fixed set of
mechanisms that the client cannot directly access. Some of these mechanisms will evaluate value
functions in order to compute an optimal (or near optimal) schedule for processes on a given node.
The value functions that correspond to many of the well-known scheduling approaches will be
available to the client (in a form similar to a library). However, the client may also specify the
parameters for a certain class of value functions and submit a value function to the process
scheduling facility to determine the exact policy to be followed. Although this approach does not
allow the client to specify an arbitrary value function to the process scheduler. it does allow much
more freedom than choosing from a small menu of wel-known policies (such as "missing fewaest

deadlines” or "minimize maximum lateness").

Second, there are a number of places where application-defined policies and policy/mechanism
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separation can be used. We considered the possibility that we could have two levels of application-
defined policies: policies that affected the entire distributed program and policies that affected
individual arobjects. We believe that there are cases where both of these aiternatives make sense.
However, neither process scheduling nor process reconfiguration seems to have a compelling use for
arobject-level policies. As a resuit, the policy definition capabilities described in this document are
concerned only with polipies that affect the entire distributed application program. Perhaps we will

pursue multiple levels of policy in a later version of ArchOS.

There is anather sense in which muitiple levels of policy may be discussed -- a hierarchical sense. A
facility at a given level of abstract may be decomposed into a set of mechanisms that are manipulated
by means of a set of policy statements. Each of the mechanisms at that level of abstraction, in turn,
are also decomposable at a lower level of abstraction into a set of lower-level mechanisms
manipulated by a lower-level policy; and so on. At this time, it is difficult to see exactly how such a
hierarchical decomposition of facilities will aid in their design or performance. For the present, we.
have decided to apply the notion of policy/mechanism separation at only a single, meaningful level.
(Our system was not intended to examine this policy/mechénism hierarchcy, and, once again, it is not

central to the development of ArchQS as a research vehicle.)

Third, aithough we are currently employing only two client-defined policies, the primitives provided
for the definition of policies by the application program are intended to be used for any other policies
that may be defined. They are very generic in nature (associating a policy module with a special
policy name and associating values with attribute names that may later be examined in carrying out
policy decisions) and were intentionally selected to support a wide-range of policy definitions. We felt
that a general approach to policy definition was maore desirabie than a specialized approach for each

policy to be handled.

Finally, we have given the implementation of an application-detined process scheduling policy some

thought. Since this facility must be accessed often and it must manipulate low level operating systern

- objects (such as the queue of runnable processes), it would be advantageous for it to be resident in
the kernei’'s memory space. We intend to have a method to allow at least that special case, of an

. application-defined policy module be resident in kernel space. Of course, updating the process
scheduling policy and coordinating the access of the policy module with client-space data will

provide some additional complications, but these should not be too great.
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4.4.3 ArchOS Primitives

The ArchQS primitives described in this report can be divided into two levels. The primitives which
belong to the ArchOS kernel level are called kerne/ primitives and the primitives which are
implemented above the kernel are called system primitives. This distinction will help an application
designer but we did not provide any indication of which is which at this stage. The relation between
the system and kernel primitives wiill be described in more detail in the Sys‘tem Architecture

Specification document.

This section starts by briefly pointing out the important design problems for the complete set of
ArchQS primitives. It then describes our design decisions for each primitive, reflecting the structure

in the the previous chapter.

4.4.3.1 Important Design and Research Problems

In the design of the ArchOS primitives, we consider simplicity and uniformity to be the most
important design goals. All of the ArchOS primitives should provide a uniform interface to a client.

Thus, a primitive is accessed by a procedure (or function) invocation.

While we are trying to achieve simplicity, we also consider the primitive set’s optimality as well as its
completeness. Unfortunately, there is no formal notion of a compicte set of prinitives in a distributed
operating system context [Tokuda 83a], so we have tried to evaluate the primitives’ expressive power
in varicus distributed applications.

e Simplicity:

We have adopted a procedure (or function) call interface for all of our primitives. Even
though the request message must be t.ansferred to a suitable arobject by a Request
primitive, 1t will be called by a procedure (or function) interface. It should be noted that
our ariginal intention was to recuce the number of primitives visible from a client process.
For instance, a single Create primitive would be sufficient if the target lJanguage allowed
"overloading"” of procedures/tunctions. The current CreateArobject and CreateProcess
could be united and used as follows:

araobject-id
process-id

Create(arobj-name);
Create(process-name),

One weak point is the lack of a nouon of defauit parameters. For example, the default
value of the node-id argument in the CreateProcess primitive could be set to "ANY-
NODE", so that a caller would not need to specify this cptional argument =very time.
However, the current ArchQOS interface requires that the client must specify all parameter
values explicitly at calling time. (due to the limitation of C language.)

e Unitormity:
We have provided a uniform syntax as well as uniform (i.e., netwerk trunsparent or
Iccation independent) semantics for each primitive. For instance, communication
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primitives provide the identical semantics for local and remote communications. Arobject
and process management primitives also provide uniform semantics for creating and
destroying an instance.

e Optimality and Completeness:
While attempting to minimize the number of primitives in ArchOS, we paid careful
. attention to assure that the full expressive power of the primitive set was maintained. On
the other hand, many primitives were added to support new facilities such as transaction
and policy management. Also due to some language constraints, we needed to increase
the number of primitives a little, but the current primitive set can be used to construct an
extremely diverse set of distributed applications.

4.4.3.2 Arobject/Process Management

We view an arobject as a basic module for embodying a distributed abstract data type. In particular,
we decided to treat an arobject as an active system entity rather than a passive entity. There are many
advantages and disadvantages related to this decision. First, we can easily define an autonomous
module. It is easy for an arobject not only to in_itialize its computational state by itself, but also to
recover its computational state by itself. In oiiver words, by having a single INITIAL process in each
arobject, a designer can give responsibility for recovery to the INITIAL process. Second, unlike
traditional procedure invocation in abstract data types, a caller cannot invoke an cperation of an
arobject in a master-s/lave manner, but must use a form of rendezvous. The receiver therefore has the
right to accept, reject, or delay the requested function. Finally, the degree of parallelism within an

arobject can be dynamically changed in many ways. For instance, a process can be created in a

different node to perform a requested computation on demand or many processes can be pre-created

to accept a particular type of request.

We provided a completely network transparent arobject/process management. That is, creation
and destruction of arobjects and processes can be performed without knowing the location of the

target arcbject or process.

The following functionalities are not adopted for the current AtchOS:

- e Multiple, simultaneous creaticn 2f arobjects and processes

This might be useful to instantiate a replicated arobject simuitaneously. However, it
creates more conflict with other optional arguments such as node-id. Thus, it must be
invoked once for each arobject or process instance in the current system.

e Hierarchical dependency among arobjects
There are no hierarchical dependency among arobjects except for nested arcbjects in a
distributed program. Thus, a single arobject can be created and destroyed with no effect
on the rest of the external the arobjects in the same distributed program. However, it
should be noted that nested arobjects are killed when enclosing arobject is killed.
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e Inheritance relationship among arobjects

There are no inheritance relationship among arobjects. In modern programming
languages, such as Smalltaik-80 [Goldburg 83], Fiavor {Wewnreb 81], and
LOOPS [Bobrow 81], the inheritance relationships among objects have shown great
advantages, improving the structural sharing among abstract objects and simplifying the
modification of the existing objects. We considered a multiple inheritance relationship
among arobjects, but there were many difficult problems in providing a way to forward a
request message to its super(class) arobject. In our arobject paradigm, we wished to
avoid an unnecessarily (deep) hierarchy among arobjects; thus we did not adopt the
inheritance relationship. However, the current model can support a nested arobject
which is private to the outer arobject.

e Hierarchical dependency among cooperating processes

There is no hierarchical relationship among cooperating processes. For instance, in
ADA [Ada 83], the termination of a task depends upon the termination of its inner blocks'’
tasks. Thus, the termination of a higher-level task may be delayed. In Shoshin [Tokuda
83b], every process must belong to a family tree which indicates such termination
dependencies. A process in Shoshin can be attached to or detached from the creator's
family tree at creation time. This dependency information might be useful during the
debugging phase, but the current system does not support this facility. Thatis, a process
can kill other processes or terminate itself without causing any additional killing among
communicating processes.

There are some restrictions on the use of the Kill primitive in ArchOS. First, a process can kill only a
process which exists in the same arobject. The reason is that, in principle, a process should not be
able to "see"” within the body of the other arobjects. Even if a process were visible from the cutside of
its arobject, that process should be protected from being killed by other arcbjects in order to protect

its own environment.

4.4.3.3 Communication Management

The primitives for communication management were designed to provide support not only for a
conventional client-(single)server model but also for cooperation among multiple servers in a

distributed environment. Thus, the system supports 4 Request-Accept-Ragiy type of communication

among cooperating arcbjects in either a synchronous or an asynchronous manner.

To support such a cooperating server model, we also created a one to many type of communication
among cooperating arobjects. That is, a process can invoke an operation on a group of pariicular
arobject instances at once. To provide this type of communication, we have adopted asynchronous
Request (i.e., RequestAll and RequestSingle) and GetReply primitives. Unlike a completely
synchronous communication, the requestor does not need to wait for ali replies to come back.

However, this asynchronous feature may increase the compiexity of transaction control.
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As for various server structures, we are interested in a collection of servers which can increase the
availability and reliability of service. The productivity of the servers may also increase together in a
collection of cooperating workers. Even for the single server case, it is easy to make an arobject
autonomous and cooperative, since there is at least one process managing its service. Unlike the
master-slave relationship in remote praocedure calls, the server can control not only the sequence of

incoming messages, but also the execution order of the actual services.

The current communication management does not support or adopt the following functionality:

o Message forward primitive
A message forward priritive was not added in order to maintain the basic rule that only
the arobject receiving the reauest message can send a reply to the caller. Furthermore,
within an arobject, a process can simulate a forwarding function by creating a new
process and passing the message as its initial parameter. The {ack of a general forward
primitive may adversely affect the creation of pipelined server processes, but it prevents
tllegal use of transactions across the arobject boundary.

e Remote procedure call paradigm

Although a process can communicate with other arobjects only by invoking arobject
operations, no master-slave relation exists in our message passing paracigm. Our model
Insists on a rendezvous type of communication among arobjects. Note that when a
process accesses a private data object from a remote node, a conventional remote
procadure call will be used. f such a data object and the calling process are located in
the same node, then the normal procedure cail will be used with identical semantics to
the RPC case.

e Built-in timeout facility in communication primitives
In orcer to bound the execution time of communication activity, we considered adding
one more argument, namely a timeout value, to each communication primitive. However,
we preferred to give the user a timeout facility outside the communication primitives. It
shcuid be noted that each communication primitive may contain a compound transacticn
so that it is also bounded internally.

4.4.3.4 Svnchronization

There are two levels of synchronization support in ArchOS. One is 4 critical region for controlling
shared private data objects and the other is explicit locking primitives for controliing inter-transaction

activities.

There are many problems with the critical region construct. For instance, if a process dies within a
critical region, the state cf the shared objects cannot easily be restored. It is also difficult to hound

the total waiting time as well as the execution time of the critical region.

Cespite these difficulties, a critical region scheme was adopted, since we expect that creating a
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compound transaction for such a shared object may be unnecessary in certain situations. For
instance. there are cases in which permanency of data objects is sufficient without providing full

failure atomicity.

The explicit lock and release primitives were necessary to control concurrent transaction activities.
It is clear that by using a discrete lock type, we could encounter a deadlock. In case of a simple
deadlock, ArchOS might detect and resoive it; however, in general, it will remain the user's

responsibility to detect and resolve deadlock problems.

On the other hand, by using a tree lock protocol a user can avoid the deadlcck problem in some

cases. However, a user must declare the dependency among locks in a tree by using the Createlock

primitive. (See Section 4.4.2.7).

The current synchronization management does not support or adopt the following functionality:

e Error recovery in a critical region scheme
We believe that any shared object which requires failure atomicity should be accessed
from a transaction. For instance, we can use a compound transaction to replace the
critical region by using the CT{ ... } construct.

e Timeout (exception) handling within a critical region
The critical region construct simply takes a timeout parameter to bound the total
execution time of the caller. This timeout mechanism does not provide a corresponding
exception handler. Thus a user must provide its function.

4.4.3.5 Transaction/Recovery Management

A compound or elementary transaction construct creates a new transaction scope in a client
process. Within this scope, a client can access atomic objects as if these computational steps were
executed alone. However, there are several restrictions on these steps needed to maintain the basic
properties of transactions. The<e restrictions are as follows:

e Between any two transactions, a transaction cannot pass any its computational state to

the ather transaction by using a non-atomic data object. The following Exampie 1 shows
two illegal transaction scopes in a single process.
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Example 1: Computational State Passing via a Non-atomic Data Object

Arobject Server body

{ ...
process INITIAL(parameters)
{ L. .
NormalType State,, State,; /* Non-Atomic objects */
ET,(timeout){
State, = Compute (arg,, ..., arg,)
}
ET,(timeout){
State, = Compute,(State,, arg,., ..., arg,)
}
}
}

In Example 1, the illegal (state) passing occurs within the INIT process by using the
non-atomic data object, Statel. Since ET2 depends on the value of State,, the

transaction property of ET, will not maintained.

e From two independent transaction scopes, two arobjects cannot communicate with each
other by using a communication primitive or a shared abstract data object. This is an
example of so-called cooperating transactions [Sha 83] and the current ArchOS model

does not support it.

For instance, the following two examples show normal and cooperating transaction

scopes.
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Example 2: A Normal Transaction Scope

Arobject Requestor body

{ ...
process INITIAL(parameters)
{ ...
ET(timeout){
Request(Server-Aid, SERVICE, regmsg, repmsg);
steps
}
}
}
Araobject Server body
{...
process INITIAL(parameters)
{ .
while (true) {
t-opr-aid = AcceptAny(ANYQOPR, reqgmsg):
CT(timeout) /* begin compound transaction */
steps
do_service(t-opr-aid.opr, regmsg, replymsg);
} /* end transaction */
Reply(t-opr-aid.tid, replymsg):
}
}




Example 3: A Cooperating Transaction Scope

Arobject Requestor body

{ ....
process INITIAL(message)
{ .o
cT(timeout)({
kKequest(Server-Aid, SERVICE, regmsg, repmsg);
steps
}
}
}

Arobject Server body
r

process INITIAL(message)

{ e
while (true) (
CT(timeout){ /* begin compound transaction */
t-opr-aid = AcceptAny(ANYOPR, regmsg);:
steps
do_service(t-opr-aid.opr, regmsg, replymsqg);
. Reply(t-opr-aid.tid, replymsg):
} /* end transaction */
}
}
}

In Example 2, it is easy t0 determine the execution sequence of the two transactions.
That is, ET in the requestor happened before CT in the server. On the cther hand,
Example 3 shows two concurrent arobjects, namely two INITIAL processes,
communicating with each other from within two separate transactions.

o lf an elementary transaction contains a nested compound transaction, there is a
possibility of deadlock due to the nature of the lock management. The following example
shows the possibility of deadlock within a single transacticn.




Example-4: A Deadlock within a Single Transaction

Arobject Server body

{

Process Server(message)
{ .
ET(timeout) { /* begin elementary transaction */
. ET step 1 . . .
sval = Setlock(DISCRETE, Lx, WRITE) /* get a lock on ob
operate on X .

CT(*imeout){ /* begin compound transaction */
. CT steps . . .
/* get a lock on object X */
sval = SetlLock(DISCRETE, Lx, WRITE)
<<. . . operate on X . . .>> /* deadlock! */
} /* end transaction */
ET step 3
} /* end transaction */

The problem occurs when the nested compound transaction tries to obtain a lock on
object X. Since the lock was already taken by the top level transaction ET, this compound
transaction will abort due *o timeout.

The current transaction/recovery management facility does not support or adopt the following
functionality:

e Cooperating transacuons
Cooperating transactions are not supported as explained above.

e Detection of deadlock in the iock management
Complete detection in the locking facility is not provided. A detection mechanism, in
general, was left for the application designer. However, the proper uce of tree-locks may
help the ciient to avoid deadlcck,

¢ Automatic generation of a compensate action for a compound transaction
It is very complicated to automatically generate a compensate action for each operation
involved by a compound transaction. Thus, this was left for the application designer.
ArchOS supports only the automatic execution of well-defined compensate actions when
a compound transaction is abdrted.

¢ Automatic lock management for a shared object
To determine the proper set of lacks and their locking rules from the program is not an
easy task, and often the amount of sharing obtained s limitied due to simpleminded
locking rules. The lock management is also left for the application designer.




4.4.3.6 File Management

The current file management in ArchOS supports a single-level file structure and Jdoes not provide
any directory structure for users. However. the system can provide at least three kinds of file
properties. First, a normai tile has the data portion of the file arobject in volatile storage. Second, a
permanent file's data portion is allocated in permanent (non-volatile) storage. Finally, an atomuc file

has the data portion which is declared as an atomic data object.

Since there is no notion of file protection at this level, a protection domain can be build based on the

scope of the reference name.

The current file management does not support or adopt the following functionality. (Note that the
following features are not permanently removed from ArchOS. These functicnalities may be easily

adopted on top of the current file arobject’s structure).

e Directory structure
There is no directory structure in the current file system. A client must use a flat file name
space to classity files.

e A replicated atomic file type
This replicated file type must vary in terms of its access protocois and replication
schemes. Thus, there is no system supported replicated file tyne so far,

e File sharing and protection scheme
There is no conventional access list for a file object, rather each file will have a set of
locks to control concurrent file accesses.

It should be noted that if a normal or permanent file is accessed from a transaction scope, all of the
transaction properties will not be provided. The file must be an atomic file type in order to fully utilize
the transaction facility. -

4.4.3.71/C Device Management

The 170 device management provides a set of access primitives for norinal or special devices in tha
system. These primitives are similar to the ones which are used for file management, but ArchQS

does not provide complete compatibility between the two.

The current 1/0 device management does not support or adopt the following functionality.

e Full compatibility between devices and tiles
The main reason was that it is difficult to cover all different, specialized devices as
standard (i.e., atomic, permanent or normal) files.

e Transaction facilities are not supported on the real devices
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Unlike arobjects. a user cannot create a transaction for a sequence of device operations.
This is because "undo's are often impossible foilowing real actions taken on these
devices.

4.4.3.8 Time Management

The time management primitives provide functions for obtaining getting time information and/or
setting/resetting scheduling parameters for performing time-driven scheduling. This time-driven
scheduling is based on ArchOS' best effort scheduling model. Since this model requires at least
request. delay, deadline, and estimated execution times as basic parameters, the Delay and Alarm

primitives were designed to provide these parameters from a client process.

There are several approaches to the provision of these functions in a real time operating system, but
these were chosen in an attempt to provide maintainabiiity and modularity as well as time control. For
example. many systems provide a process time-out setting to be made at which an application
process will be scheduled. This frequently requires breaking a module at the delay point into two
processes, rendering the processing difficult to read and understand. The Delay and Alarm primitives
provid-e for such delays to be coded inline in the application without breaking the process into

multiple processes.

At the same time, the dead!line-driven scheduling algorithm to be used in ArchQS is provided with
the time parameters needed to apply deadline policies. A part of the research being conducted on
the Archons project concerns process scheduling in the presence of application-defined deadlines. it
is intended that application-defined policies will be used to control deadline-driven scheduling which
will attempt to meet deadlines or minimize the damage if insufticient resources are avarabte .0 me:d

deadlines.

The current time management does not support cr adopt the following functionality

e Asynchronous Delay or Alarm primitive
Since we would like to avoid interrupt-driven timeout routines, the G-,
primitives are tlocking primitives. This reduces the complexity reguires = ' e
of a process body. To provide this type of asynchronous handing, the sver -
new (time) process to avoid the blocking.

4.4.3.9 Policy Management
The policy management primitives provide functi.ns ~hio-

policy module. The policy set arobjact maintains = ~et 3t o

policy module represents a real policy and maintar « 1+ ", -
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" 1e current policy management does not support or a.  pt the following functionality:

e Dynamic addition/deletion of a new user-defined policy module
The current modal can only support predefined set of user policies, thus a new user-
defined policy cannot be recognized by ArchOS.

4.4.3.10 System Monitoring and Debugging Support

The system monitaoring and debugging facilities provide various abilities to control the behavior of
cooperating arobjects and their processes during execution. All of the primitives for system
monitoring and debugging can only be used by a specially privileged arobject, so that a normal client

arobject cannot issue any of them.

The current system monitoring and debugging facilities do not support or adopt the following

functionality:

e Single-step function for tracing process activity
A single step function is not supported yet, but may be added in the future.

e Creating an arbitrary break point in an arobject
A client cannot set an arbitrary break point in an arobject. The available breaking points
are only the communication points where a process sends or reccives a message. A
monitoring process may trap the following execution step by using the CaptureComm or
WatchComm primitives.

e Specialized debug functions such as Redo or Undo operation for arbitrary
functions
These facilities should be built by using the current facilities, rather than creating a set of
new primitives.

(4

4.5 Program Examples

This appendix presents an example problem invalving a distributed data object along with two

potential solutions employing arobiects and the ArchOS system primitives.

4.5.1 The Problem: A Distributed Directory with Partially Replicated Data

In this example, the problem is to implement a distributed directory, where the directory data is
physically spread among several processing nodes with each directory entry replicated at }nultiple
nodes in order to improve reliability. Notice that there is no guarantee that every node has a complete
copy of the directory information.

In particular, the problem is to construct a distributed directory of some fixed length, where each

entry in the directory associates a name (a string of characters) with a value (in the examples, the
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values used are assumed to be integers). The data in the directory must be partially replicated at
several different processing nodes, and directory users must always have a consistent view of the

directory.

This type of distributed directory represents a class of data object that will be common in an ArchOS
client's distributed program---an object that is highly robust (due to the presence of muitiple copies of
each critical data item at physically separate nodes) but does not require that the user of this data
object be aware of the physical distribution involved in the implementation. (In fact, this

implementation is invaked by the user in exactly the same manner as a centralized data object.)

4.5.2 The General Approach to the Problem

The solutions presented in the next two sections are both built upon the same fundamental
approach. The directory data is contained in several different arobjects (cailled directory-copy
arobjects), located at different processing nodes. These arobjects each contain some portion of the
total directory state, but it is unlikely that any two of them contain exactly the same data or that any

one of them contains all of the current directory data.

Another entity is provided to consistently access and maintain the directory-copy arobjects so that
the directory user "sees" a single directory object (called the directory arobject). This entity takes a
different form in the two solutions that follow, and this is their major distinguishing feature. In the first
example, one or more directory arobjects accept directory operation invocations and then service
them by making the appropriate invocations on the directory-copy arobjects. All of the arobjects in
this solution are separate entities, and so this solution views the organization of arobjects as being
Guite "flat.”

In the second solution, the entire directory service is provided by a single arobject. This arcbject is
physically distributed over several nodes and has placed muiltiple processes throughout the system to
accept directory operation invocations. In addition, the directory-copy arobjects are embedded
within the directory arobject as private arobjects in the second solution. As a result, this solution

views arobjects as being organized in a hierarchical manner.

ArchOS supports both views of the organization of arobjects (flat or hierarchical). Neither of them
appears to be better than the other for this example, but the client is free to organize arobjects in the

manner that seems most advantageous for the application at hand.

Both solutions manage the coordination of the multiple directory copies in the same way: by
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applying the notion of using anly a quarum [Gilford 79, rerlihy 84 of directory copies in order to carry
out any operation on the distributed directory. Using this method allows the directory to continue
operating smoothiy even if several directory copies are unavailable at any given time. Each directory
operation (loaokup, add, delete) requires only a quﬁrum L. directory copies be involved to perform that
operation. In order to determine the latest vaiue of a given name, the directory-copy arobjects also
maintain a version number with each entry name. (The current value of a given name corresponds to

the entry for that name with the highest version number in any directory copy.)

Also, notice that the transaction facility has been used in order to guarantee the consistency of the
directory information at all times. Elementary transactions have been used for the most part since the
directory operations invoked by a user of the directory arobject may be part of a larger transaction,
and in that case, if compound transactions had been used, the consistency of the directory could no
longer be guaranteed.

4.5.3 Solution 1: Two Cooperating Classes of Arobjects

As outlined in the previous section, this solution uses several separate directory and directory-copy
arobjects distributed throughout the system. The code for these arobject types is assumed to be
contained in two files: "directory.arb" contains the code for the directory arobject and "dir-copy.arb"

contains the code for the directory-copy arobject.
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/*tlit***'l-&-kts31‘hSR#*-%***-R9"fl*‘i**fl'k#'fkk*#'k*#*#*‘i'k#fk'kik&tkh0'-kbllthkl'ﬁ

L) *
. This code is contained in the file "directory.arb” *
L k

't‘#t‘**’*##3#‘*-I’It‘ilﬁ**#t#***#**#*tt*i*.t##**t*****t*#l*1#***tt‘/

#define DIR-COPIES 2*N+1

#define READ-QUORUM N+1

#define WRITE-QUORUM N+1

#define DEL-QUORUM 2*N+1

/* 1f a DEL-QUORUM cannot be formed, NULL can be written to the value
field of a new version of thedesired name. later, when alil

copias are available, a delete can again be attempted. */

arobject directory specification

{
char “name:
int value; .
STATUS result:
operation add(name, value) --> {(result);
operation delete(name) --> (result);
operation find(name) --> (result, value);
}
arobject directory body
{

*+*** insert message type declarations here *****
/* Private Abstract Data Type Definitions */
private-abstract-data-type DCNAME = {

permanent AROBJ-REFNAME dir-copy-name;

/* Procedures to Operate on Atomic Data Items */

procedure store(dcname)
AROBJ-REFNAME dcname;

dir-copj-ggme = dcname;

}
AROBJ-REFNAME function get()

return(dir-copy-name);
} /* end of private-abstract-data-type DCNAME */
DCNAME dcname;

process INITIAL(dircopyname)
AROBJ-REFNAME dcname;

MESSAGE *requestmsg;
OPERATION opr;
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dcname . store(dircopyname);

while( TRUF) {
AcceptAny(ANYOPR, requestmsg);
opr = msg-header-operation{requestmsg):
CreateProcess(opr. requestmnsg):

}

process add(add-requestmsg)
{
char *name;
int value:
int i
STATUS rd-result;
int val[READ-QUORUM]:
int version[READ-QUORUMY;

TIME timeout = TIMEOUT;
TRANSACTION-ID tid, trans-id:

PID pid;

struct add-replymsg (
STATUS result;

}

strcpy(name, requestmsg.body.name);
value = requestmsg.body.value;

pid = msg-header-cal1er(add-requestms§);
tid = msg-header-tid(add-requestmsg);

ET(timeout)
trans-id = SelfTid();

read-quorum(name, val, version, rd-result);
if (rd-result != 0K)
Reply(pid, tid, {FAIL}):
AbortTransaction(trans-id);”
}
max-version = -1;
for (i=1; i<= READ-QUORUM; i++)
max-version = max(max-version, version[i]);
write-quorum(name, value, max-version+l, wr-result);
add-replymsg.body.result = wr-result;
Reply(pid, tid., add-replymsg):

}
if (IsAborted(trans-id)) { .

/* handle error condition here */
}

}

procedure read-quorum(name, value, version, result)
char *name;
int value[READ-QUORUM];
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it version[RFAD-QUURUMT;
SITAIUS result;

{

}

int count;

TRANSACTION-ID tid;
FIND-REPLYMSG find-replymnsg;

count = 0;
/* initiate timeout */
tid = RequestAll(dcname.get(), find, {name});
while (count < READ-QUORUM) {
GetReply(tid, find-replymsg):
if (find-replymsg.body.result == 0K) {
count++;
value[count]

= find-replymsg.body.value;
version[count] =

find-replymsg.body.version:
}
) .
/* Need to fix case where quorum cannot be established. */

AbortIncompleteTransaction(tid);
result = 0K;

procedure write-quorum(name, value, version, result)
char *name;

int value, version;

STATUS result;

{

int count;

TRANSACTION-ID tid;
struct add-replymsg

count = 0;
/* initiate timeout */
tid = RequestAll(dcname.get(), add, {name, value, version})
if (add-replymsg.body.result == QK) count++;
while (count < WRITE-QUORUM) {
GetReply(tid, add-replymsg);
if (add-replymsg.body.result == 0K) count++;

/* Need to fix case where quorum cannot be found. */
AbortIncompieteTransaction(tid);
result = 0K;

/* End of directory‘arobject body */
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* *
* This code is conLained in the file "dir-copy.arb” *
* . *
tt.t#itt*’lt*t“*'&##***ttt*t*t*‘t#t*l#*##t'-k*t#**&#&tt*#t#t‘lﬁ#‘t#tt/

arobject directory-copy specification
{ .
char name[MAXSIZE]:
int value;

int version-no;
status result;

operation add(name, value. version-no) --> (result);
operation delete(name) --> (result);
operation find(name) --> (result. value. version-no);:

}

arobject directory-copy body
{
/* Private Abstract Data Type Definitions */
private-abstract-data-type TABLE = {
TREE-LOCK-ID t-lock{ TABLESIZE]:

/* define tree lock structure as a "linear" tree, such that
t-lock[1] is the root and has child t-lock[2];:
t-lock[2] has child t-lock[3];:
and so on. */

atomic struct table[TABLESIZE] {

char *nane;

int value;

int version;

}

/* Procedures to Operate on Atomic Data Items */

procedure init-table()

{
int i; .
TIME timeout = TIMEQUT;
TRANSACTION-ID tid;

/* define tree lock structure */
t-Tock[1] = CreatelLock(NULL-LOCK-ID);
for (i=2; i<=TABLESIZE; i++)

t-lock[1] = Createlock(t-lock[i-1]):

CT(timeout) {
tid = SelfTid();
for (i=1; i<=TABLESIZE; i++) (
SetLock(TREE-LOCK, t-lock[i], WRITE);
table[i].name = NULL;
ReleaseLock(TREE-LOCK, t-Tock[i], WRITE);




1f (TsAborted(tidy) {
/* handle error condition */
}

}

procedure lookup(name, index)
char *name;

{
int index, i;
TIME timeout = TIMEOUT;
index = -1;
ET(timeout) {
for (i=1: i<=TABLESIZE; i++) {
SetLock(TREE-LOCK, t-lock[i]. READ):
if (strcmp(table[i].name, name) == NULL) {
index = 1i;
breakfor;
}
Releaselock ( TREE-LOCK, t-lock[i]. READ):
}
}
}

STATUS function enter(index, name, value, version-no)
char *name;
int index, value, version-no;
{
TIME timeout = TIMEQUT;
TRANSACTION-ID tid;

ET(timeout) {
tid = SelfTid();

SetLock(TREE-LOCK, t-Tock[index], WRITE);

if (table[index].name != NULL || table[index].name != name)
AbortTransaction(tid);

strcpy(tablefindex].name, name);

table[index].value = value;

table[ index].version = version-no;

}
if (IsCommitted(tid)) return(0K);
else return(FAIL);

}

procedure get-fields(index, name, value, version-no, result)
char *name;

int index, value, version-no;

STATUS result = FAIL;:

TIME timeout = TIMEOQUT;
TRANSACTION-ID tid;

ET(timeout) {
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tid = SelfTid():

Setlock(TREF-LOCK. t-lock[index]. RFAD):
strepy{name, tablel yndex].name);

value = tahle[index].value:

version-no = table[index].version;

}
if (IsCommitted(tid)) result = OK;

}
} end of private-abstract-data-type TABLE */
TABLE tab:
process INITIAL()
{
OPERATION opr:
tab.init-table();
while (TRUE) (
AcceptAny(ANYOPR, requestmsg):
opr = msg-header-operation(requestmsg);
CreateProcess{opr, requestmsg);
}
}

process add(add-requestmsg)
ADD-REUUESTMSG add-requestmsg;

|

char *name;

int value, version-no;
int index;

STATUS stat, enter():
TIME timeout = TIMEOQUT;

struct add-replymsg {
STATUS result = FAIL;
}

strcpy(name, add-requestmsg.body.name);
value = add-requestmsg.body.value;
version-no = add-requestmsg.body.version;

ET(timeout) {
index = lookup(name);
if (index < 0) index = Tookup(NULL);
if (index < 0) AbortTransaction(SelfTid()):
stat = enter(index, name, value, version-no);
if (stat != OK) AbortTransaction(SelfTid());
add-replymsg.body.result = 0K;

Reply(msg-header-caller(add-requestmsg),
msg-header-tid(add-requestmsg), add-replymsg);
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process ‘inh(find requestnsg)
FIND-RIQUESTMSG tind requestmsyg:

{

char *name;

int index, value, version-no;

char *entry-name;

STATUS stat;

struct find-repiymsg ...:

PTD pid;

TRANSACTION-ID tid;

strcpy(name, find-requestmsg.body.name);

pid = msg-header-caller(find-requestmsg):

tid = msg-header-tid(find-requestmsg);

index = lookup(name);:

if (index < 0) Reply(pid., tid, {NOT-FOUND});

else {
get-fields(index, entry-name, value, version-no.
if (strcmp(name, entry-name) == NULL)

Reply(pid, tid, {OK, value, version-no}):

else Reply(pid, tid, {FAIL});

}

}

/* End of directory-copy arobject body */

stat):
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4.5.4 Solution 2: A Single, Distributod Arobject

As previously discussed. this solution implemenis the entire directory server as a single arobject in
which several directory-copy arobjects have been included as private arobjects. As in the previous
solution. the code for the directory arobject is located in “directory.arb.” while the code for the
directory-copy arobject is located in "dir-copy.” In fact, the code for the directory-copy arobject is
exactly the same as in the first solution; however, the code for the directory arobject has been
changed somewhat. The greatest change has taken place in the INITIAL process of the directory
arobject: also, the directory arobject now contains a statement that identifies the description of the

directory-copy arobject as a private arobject.
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* This code is contained in the file "directory.arb” *

L 3 )

C‘iiltt#*‘*#t“****t‘**&**t*#**t****trkt#**k****t*»k***:k*#t***##**t*/

#define NDIR-COPIES 2*N+1

#define READ-QUORUM N+1

#define WRITE-QUORUM N+1

#define DEL-QUORUM 2*N+1

/* If a DEL-QUORUM cannot be formed, NULL can be written to the value
field of a new version of thedesired name. tLater, when all

copies are availabie, a delete can again be attempted. */

arobject directory specification

{
char *name;
int value;
STATUS result;
operation add(name, value) --> (result);
operation delete(name) --> (result);
operation find(name) --> (result, value):
}
arobject directory body
{

#*22* insert message type declarations here *****
/* Private Abstract Data Type Definitions */
private-abstract-data-type DCNAME = {

permanent AROBJ-REFNAME dir-copy-name;

/* Procedures to Operate on Atomic Data Items */

procedure store(dcname)
AROBJ-REFNAME dcname;

{

}
AROBJ-REFNAME function qet()

dir-copy-name = dcname; .

raturn(dir-copy-name);
} } /* end of private-abstract-data-type DCNAME */
DCNAME dcname;
private-arobject directory-copy = "dir-copy.arb”;

process INITIAL()

NODE node[ TOTAL-NODES] = {NODEA, NODEB, ... ,NODEN}:
int 1; }




99

AL aad:

for (1=:1: i<=COPIFS: i++)
ard = CreatwArobject(directory-copy, NULI .
BindArobjectName(aid, "dir-copy");

}

dcname.store("dir-copy”):

for (i=1:.1<=SERVERS:; 1++)

nodef 1,}:

CreateProcess(accept-invocs, NULL, node[i]):

}

process accept-invocs()

MESSAGE *requestmsg;
OPERATION opr:

while(TRUF) {
AcceptAny (ANYORR, requestinsg);
opr = msg-header-operation(requestmsg):
CreateProcess{opr, requestmsg);

}
}
process add(add-requestmsg)
{

char *name;

int value;

int i;

STATUS rd-result;

int val[READ-QUORUM];

int version[READ-QUORUM];

TIME timeout = TIMEOUT;
TRANSACTION-ID tid, trans-id;

PID pid;

struct add-replymsg {
STATUS result;

}

strcpy(name, requestmsg.body.name);
value = requestmsg.body.value;

pid = msg-header-caller(add-requestmsg);
tid = msg-header-tid(add-requestmsg);

ET(timeout) (
trans-id = SelfTid();

read-quorum(name, val, version, rd-result});
if (rd-result != 0K) {
Reply(pid, tid, {FAIL}):
AbortTransaction(trans-id):

}

max-varsion = -1;




}
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for (i=1: i<= RCAD-QUORUM; 1++)

max version = max{max-version, version{i]);
write-quorum(name, value. max-versiont+tl. wr-result):
add-replymsg.bhody.result = wr-result;
Reply(pid, tid, add-replymsg}):

}
if (IsAborted(trans-id)) {

/* handle error condition here */
}

procedure read-quorum(name, value, version, result)

char

*name:

int value[READ-QUORUM]:
int version[READ-QUORUM];
STATUS result;

{

}

int count;

TRANSACTION-ID tid;
FIND-REPLYMSG find-replymsg;

count = 0;
/* initiate timeout */
tid = RequestAll(dcname.get(), find, {name}):
while (count < READ-QUORUM) {
GetReply(tid, find-replymsg);
if (find-replymsg.body.result == OK) {
count++;
value[count]

= find-replymsg.body.value;
version{count] =

find-replymsg.body.version;
}
} .
/* Need to fix case where quorum cannot be established. */

AbortIncompleteTransaction(tid);
result = 0K;

procedure write-quorum(name, value, version, result)
char *name;

int value, version;

STATUS result;

{

int count;

TRANSACTION-ID tid:
struct add-replymsg

count = 0;
/* initiate timeout */
tid = RequestAll(dcname.get(), add, {name, value, version})
if (add-replymsg.body.result == 0K) count++;
while (count < WRITE-QUORUM) {
GetRepliy(tid, add-replymsg);
if (add-replymsg.body.result == OK) count++;
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}

/* Need Lo Fix case where quurum cannol be ftound. */
AbortincompleteTransaction(tid):
result = 0K:

} /* End of directory arobject body */
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arobject directory-copy specification
{ .
char name[MAXSIZE];
int value;

int version-no;
status result:

operation add(name, value, version-no) --> (result):
operation delete(name) --> (result);
operation find(name) --> (result, value, version-no):

}
arobject directory-copy body

/* Private Abstract Data Type Definitions */
private-abstract-data-type TABLE = {
TREE-LOCK-ID t-lock[TABLESIZE]:

/* define tree lock structure as a "linear" tree, such that
t-lock[1] is the root and has child t-lock[2]:
t-lock[2] has child t-lock[3]:
and so on. */

atomic struct table[TABLESIZE] (

char *name;

int value;

int version;

}

/* Procedures to Operate on Atomic Data Items */

procedure init-table()

{
int i; |
TIME timeout = TIMEOUT;
TRANSACTION-ID tid;

/* define tree lock structure */
t-lock[1] = CreateLock{NULL-LOCK-ID});
for (i=2; i<=TABLESIZE; i++) {

t-lock{i] = Createlock(t-lock[i-1]);

CT(timeout) {
tid = SelfTid():
for (i=1; i<=TABLESIZE; i++)
SetLock(TREE-LOCK, t-lock[i], WRITE);
table[i].name = NULL;
ReleaselLock (TREE-LOCK, t-lock[i], WRITE):
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1f (TsAborted(tid)) {
/* handle error condirtion */
}

)

procedure tookup(name, index)
char *name;

{
int index, 1i;
TIME timeout = TIMEQUT;
index = -1;
ET{timeout) {
for (i1=1; i<=TABLESIZE: i++) (
SetLock (TREE-LOCK, t-lock[i], READ):
if (strcmp(table[i].mame. name) == NULL) {
index = 1;
breakfor;
) .
ReleaselLock(TREE-LOCK, t-lock[i], READ);
}
}
}

STATUS function enter(index, name, value, version-no)
char *name;
int index, value, version-no;

{
TIME timeout = TIMEOUT;
TRANSACTION-ID tid;
ET(timeout) {
tid = SelfTid();
SetLock(TREE-LOCK, t-lock[index], WRITE);
if (table[index].name != NULL || table{index].name != name)
AbortTransaction(tid);
strcpy(table[index].name, namej;
table[ index].value = value;
table[ index].version = version-no;
if (IsCommitted(tid)) return(0K);
else return(FAIL);
}

procedure get-fields(index, name, value, version-no, result)
char *name;

int index, value, version-no;

STATUS result = FAIL;

TIME timeout = TIMEOUT;
TRANSACTION-ID tid;

ET(timeout) (
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tid = SelfTid():

Setl ock (TRFE-tOCK. t-lock[ index]. RFAD).
strepy(name, tablef index |.name);

value = table[index].value;

version-no = tablefindex].version;

}
if (IsCommitted(tid)) result = OK;

}
} /* end of private-abstract-data-type TABLE */

TABLE tab:
process INITIAL()
QPERATION opr;
tab.init-table():

while (TRUE) (
AcceptAny(ANYOPR, requestmsg):
opr = msg-header-operation(requestmsg):
CreateProcess{opr, requestmsg).

}

process add(add-requestmsg)
ADD-REQUESTMSG add-requestmsg;
{

char *name;

int value, version-no;

int index;

STATUS stat, enter():

TIME timeout = TIMEQUT;

struct add-replymsg {
STATUS result = FAIL;
} A

strcpy(name, add-requestmsg.body.name});
value = add-requestmsg.body.value;
version-no = add-requestmsg.body.version;

ET(timeout) {
index = lookup(name);
if (index < 0) index = lookup(NULL);
if (index < Q) AbortTransaction(SelfTid());
stat = enter(index, name, value, version-no);
if (stat !s Q0K) AbortTransaction(SelfTid()):
add-replymsg.body.result = 0K;
}
Reply(msg-header-caller(add-requestmsg).,
msg-header-tid(add-requestmsg), add-replymsg).
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process tind{lind-requestmsy)
FIND-REQUESTMSG tind-requestmsy;
{

char *name;

int index. value, version-no;
char *entry-name;

STATUS stat;

struct find-replymsg ...;
PID pid;
TRANSACTION-ID tid;

strcpy(name, find-requestmsg.body.name);
pid = msg-header-caller(find-requestmsg);
tid = msg-header-tid(find-requestmnsg);

index = lookup(name):
if (index < 0) Reply(pid, tid, {NOT-FOUND}):

else (
get-fields(index, entry-name, value, version-no,
if (strcmp(name, entry-name) == NULL)

Reply(pid, tid, {OK, value, version-no});
else Reply(pid, tid, {FAIL}):

}

/* End of directory-copy arobject body */

stat).
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5. ArchiOS Sysiem Architecture Dascripntion

o

This chapter describes the system architecture of ArchOS which supports all of the factlites and
primitives described in the client intertace document [Jensen 85). Since we view "ArchOS system
architecture” as a high-level view of the internal system design, this chapter focuses on the
description of the major components of ArchOS operating system and leaves the detaiied design to

the next chapter.

From a conceptual point of view, ArchOS consists of the ArchOS kernel and system arobjects which
are grouped together to form subsystems. The ArchOS kernel provides a set of basic mechanisms
which can support arobjects in both kernel and client address spaces. 2n ArchOS subsystem
consists of one or more system arobjects which provides an ArchOS facility. In other words. the
ArchQS primitives described in the client interface document are defined as a set ¢f operations of

these system arobjects.

5.1 Overview

ArchOS is not a time-sharing operating system nor a network operating system for a set of
workstations. ArchOS is a physically dispersed operating system which performs decentralized
system-wide resource management for a decentralized computer which can be physically dispersed

across 10° to 103 meters, interconnected without the use of shared primary memory.

We view ArchQS as a reserach vehicle to perform research on the issues of decentralization in
real-time distributed systems at the OS level and below. Thus, the ArchQS facilities were designed to
allow test applications to be constructed with which to study ArchQOS characteristics, but they need
not provide a particularly complete set of facilities in an application production environment. As we
specified in the client interface document, some system facilities are not fleshed out. but each facility

is functionally closed so that each function can be evaluated with respect to our research issues.

The basic model for system-wide resource management in ArchOS is based on our previous
conceptual/theoretical study and experimental study. In particular, we are interested in
decentralized resource management schemes where each global decision is made muitilateraily by a
group of peers through negotiation, compromise, and consensus. Thus, ArchOS facilities are
provided by a group of cooperating servers of which each service entity is built by an arobject on
each node. Since each arobject can have its own state and can activate computation independently

of other arobjects, cooperation among servers can be easily represented by a set of arobjects.
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Furthermore, an arobject cannot feteh or modify the status of any other arobject wathaut invelang s
corresponding operation at the target arobject, thus the modulanty of arobjects can /o be achieved

as wel! as potential parallelism between the caller and called arobjects.

From the higher-level point of view, the overall structure of ArchQOS is divided into two system
components. One component is an ArchOS kernel which provides a set of basic inechanisms and
links the higher-level policy with the mechanisms and creates an arobject environment. The otheris a
set of system arobjects which implements ArchOS system facilities. A system arobject can be further
distinguished by where it resides, namely a kernel arcbject which exists in the kernel and non-kernel

arobiects which exist outside the kernel.

Since an ArchOS facility is built based on cooperating arobjects, it is easy to change the internal
implementation without impacting client programs. Furthermore, certain faciiities are also buiit based
on the notion of policy/mechanism separation [Wulf 81], so that an existing policy can be changed or
a new type of policy can be created without changing mechanisms. Thus, ArchOS facilities can be
easily tuned towards a.particular type of application environment without changing the mechanisms

in the system.

5.2 ArchOS System Architecture

The system architecture of ArchOS should be flexible enough so that various degrees of
decentralized resource management schemes can be applied in ArchOS without incurring major
modification cost. Since the Archons project is not attempting to develop a computing facility, we

must consider “openess” of the system architecture.

The system structure of ArchOS was designed to improve the .oustness, extensibility, and
modularity of OS functions. There is no centralized decision maker in the system for any type of
system-wide resource management. That is, any system-wide resource management is performed by
the cooperation among the essentially identical peer server modules at each node. These modules
allow the use of the "most decentralized” algorithms (that are practical) for managing system

resources.

The ArchOS system architecture was designed without assuming any specific hardware-level
structures such as node architecture and communication architecture. However, to maximize
performance, it is preferable to have the following architectural support: 1) Each node should have

two or more processors with a reasonable amount of shared memaory; 2) Each node can communicate
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with another node. u set of nodes (1.e., mutticasting), or all of the nodes within it reac.onable aimount of
time; 3) Each node should have a logically homogeneous environment. That is. even if the processor

architectures are different. all of the nodes can emulate the ArchOS functionality.

5.2.1 Objectives

The major objectives are derived from the research requirements and the functionality of ArchQS.
in particular, ArchQOS is designed to be a research vehicle for investigating various decentralized
resource management techniques, so that various types of OS facilities can be added. changed or
deletec.

The design objectives of ArchOS system architecture are summarized as follows:

¢ Open system architecture: .
Since ArchOS is designed as a research vehicle to investigate various decentralization
issues at operating system level and below, a new system component can be easily added
as well as deleting the existing facility.

° Hngly decentralized resource management:
ArchOS should not have any centralized decision maker in the system and should be
structured as essentially identical peer modules replicated at each system node.

e High system availability:
To maintain high system availability in the face of node and communications faults,
provide for no lasting degradation of system function or response beyond the actual
resource loss encountered.

o High system modularity:
Previous distributed systems have been constructed around the physical
communications limitations of the system, as opposed 0 being based on such modern
software engineering principles as abstract data types and information hiding for defining
modularity.

e Highly extensible facilities:
To construct highly extensible facilities which will limit the cost of redesign for
implementing widely divergent operating system facilities for experimentation with the
tundamental concepts of interest to us in this research.

e Reasonable system performance:
To provide reasonable system performance to support applications with real-time
constraints. ArchOS must consider time-critical functions for which time constraints
define some system failure modes (i.e.. issues of timeliness will not be ignored as they are
in some systems, nor will they be dealt with by simply providing a large ratio of available
to currently used resources, which 1s how virtually all other real time systems strive to
meet response time requirements).
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5.2.2 Basic Approach

A basic approach to meet the previous objectives is that we provide a uniform view of the system
components. namely a kernel and a set of arobjects. An ArchOS kernel provides basic mechamisms
for ArchOS facilities and the cooperating arobjects support the policies to provide a particular set of
services. While we avoid a large monolithic kernel, we try to improve robustness. modularity, and
extensibility of each ArchOS facility as well as increasing potential parallelism by using the

cooperating arobjects.

To meet the previous objectives, we will use the following approaches:

¢ Open system architecture:

We will ouild ArchOS based on an object-oriented architecture view. so that the ArchOS
xernel 1s not a monolithic kernel and consists of a set of basic mechanisms and kearnel
arcbjects. On top of the kernel. ArchOS facilities are provided by ccoperating arobjects.
Since an arobject encapsulates its associated information (information hicing), key
oroperties of each faciity can be easily modified without affecting the other facilities.
Furthermore. additional system flexibility will be provided by identitying and separating
mechanism and policy in ArchOS facilities.

e Highly decentralized resource management:

Since we try to avoid having any type of centralized decision maker for system-wide
rasources and each arobject can have its own comgutational state and knowledge, it is
easy to form cooperation among peer modules in the system. Unlike traditional
procedure invocation in abstract data types. a caliler cannot invoke an operation on an
arobject in a master-siave manner, but must use a form of rendezvous. Based on its own
state and decision, the receiver arobject has the right to accept. reject. or delay the
invocation of the requested operation.

¢ High system availability:
The use of atomic transactions to maintain consistency will result in continuance of
useful computation in the presence of lost., delayed, inaccurate, or incomplete
information. Also, a service handled by a set of repiicated arobjects can be easily
supported by using the one-to many communication capability together with
transactions.

e High system modularity:
Since an arobject can encapsulate its state and implementation details from the other
arobjects, it 1s easy to use it as a system building block. System modulanty is also
achieved not only by using arobjects, but also through policy/mechanism separation in
ArchOS facilities.

¢ Highly extensible facilities:
ArchQS facilites are implemented as a set of system arobjects. thus it 1s possible to
create a new type of service by creating a new set of arobjects and registering them

e Reasonable system performance:
To provide reasonable system performance. ArchQOS subsystems are built hased on 1 set
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of arobjects which can be excculed on a multiprocessor based node without major
redesign.

A conceptual view of the ArchOS system architecture is depicted in Figure 5-1. On each node built

from one or more processors with shared memory, there are ArchOS kernel and system arobjects.

Client Arobjects: |:| D l:] :
ArchQ0S:
Subsystem:
System ===
RS [ ] I (- ]
Kernel: Ky K2 Km
Node Processors: Ny N .= N
Figure 5-1: Overview of ArchOS System Architecture
Te S kerne! consists of a set of basic mechanisms and a set of system arobjects which

res.. - w. .. 1 kernel domain No system arobjects can be accessed without invoking the ArchOS
primitives. A client process ‘st use a communication primitive, request, to invoke any system
primitives. ArchQOS primitives defined in the client int'erface are provided either as kernel primitives or
system primitives. Kernel primitives are defined as an operation on kernel arobjects, while system

primitives are provided by an operation on the system arobject which exists above the kernel.

ArchOS Subsystems are one or more arobjects grouped together by sharing the same responsibility

for providing a particular service, namely a set of functions in an ArchOS facility.

A system arobject can be a kernel arobject or an ordinary arobject which resides in the user

domain. A client arobject can be created on top of the kernel and resides in the user domain.
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5.2.3 Functional Dependency among ArchQS Subsystems
The relationship among ArchOS subsystems can be summarized by abstracting out the detailed
interaction among arobjects across the vdnous subsystems. Since each subsystem consists of a set
of cooperating arobjects, many activities are nitiated by invoking a particular operation in the
arobject. This section focuse; on the functional dependency among ArchOS subsystems, rather than
. on the detailed interaction among arobjects. The description of the internal structure of each

subsystem wiil be given in the next chapter.

From a functional point of view, ArchOS subsystems can be depicted as in Figure 5-2.

ArchQOS Sybsystems:

Arobject/ Communication File Monitoring/
Pro Debu in
SURSyS. Subsys. Subsys. | | S5bsys. -
Transaction Subsys.
System Arobjects: Time-driven
VM Subsys.
Time-driven
Scheduler gﬁg:yget
Subsys. )
Policy
subsys. I1/0 Subsys.

ArchOS Kernel:

Base Kernetl

Alpha subkernel

Node Processors:

Hardware

Figure 5-2: Functional Dependency among ArchOS Subsystems

In Figure 5-2, each box represents a subsystem in ArchOS. However, unlike a traditional
hierarchical layered structured system, an operation at a lower-level subsystem can be directly
invoked from a client arobject.
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The ArchOS Kernel provides a set of basic mechanisms and consists of a set of system arobjects
which reside within a kernel domain. Within the kernel. there are two subkernei layers: the lower-level
1s called the Aipha subkernel, and the higher-level 1s called the Base kernel. Unlike a traditional
monohthic xernel. the ArchOS kernel contains a set of of system arobjects. which we refer to as
kernei aropjects, and it can initiate independent computation from client arobjects. A certain set of
basic mechanisms are realized to coordinate with the policy definition module. so that facilities may

provide a different type of functionality to clients.

The Poiicy management subsystem maintains a user-definable system module, called the poficy
definition module which consists of a policy body and a set of policy attnbutes. Since a policy
definition module can be placed in the kernel, a system arobject, or a client arcbject, the policy
management subsystem creates and destroys a policy definition descriptor which indicates the

location of the policy definition and the information related to the policy body and attributed set.

The Page set subsystem provides a uniform view of secondary storage, namely a page set in
ArchOS. An arobject can access a file through the page set and logical disk subsystems. On each
node, there is a page set manager which can allocate or deallocate a permanent type or atomic type

of page set on a specified logical disk.

The I/0 device subsystem manages interaction between |/O devices and arobjects. Any signal
from 1/0 devices is handled at this subsystem and is transiated into an invocation request for a

system arobject.

The System maonitoring and debugging subsystem provides various abilities to monitor and control

the behavior of cooperating arobjects and their processes during execution.

The Time-driven scheduler subsystem provides a time-driven scheduling facility which may be
altered by adding, changing or selecting a different type_ of scheduling policy. The basic mechanism:
1s based on ArchOS' “best effort” scheduling model [Locke 85]. This subsystem also provides
functions such as obtaining time infarmation and setting/resetting scheduling parameters for clients.

The Time-driven virtual memory subsystem provides a virtual memory management facility in a
time-driven fashion. The time-driven scheduler may be called from this subsystem to mitiate pre-
paging in/out activities in such a way that the system can execute time-critical tasks in a timely

manner.

The Transaction subsystem provides transaction mechanisms for operations on arbitrary types of
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arobjects. This subsystem supports two types of transactions. namely efement iy and compournit
transactions which can be nested in arbitrary combinations. To coordinate an atomic update for a
transaction, the transaction subsystem must cooperate with one or more page set managers which

the transaction has visited.

The Arobject/process management subsystem provides the basic functions to create and destroy
arobjects and processes. This subsystem also manages binding and unbinding of
arobjects/processes reference names and supports binding protocols to match a requestor with one
or more suitable server arobjects. The requestor arobject invokes an operation by using the

invocation protacol through the communication subsystem.

The Commurmcation subsystem provides the invocation protoco/ and manages arobject invacation
among arcbjects. This subsystem provides not only one-to-one communication for a conventional
client-(single) server model, but also one-to-many communication for the client-cooperating multiple

server model.

The Fiie subsystem provides system-wide location-independent file access. Although the file
subsystem does not support a hierarchical file name. space, a system-wide flat name space is
maintained at each node. The file subsystem also provides three kinds of file properties. A normal file
has the data portion of the file arobject in volatile storage. A permanent file's data portion is allocated
in permanent {non-volatile) storage and an atomic file has its data portion declared as an atomic data

object. For atomic files, the transaction facility is also supported through the transaction subsystem.

5.3 Structure of ArchOS Subsystems

An ArchCS subsystem consists of a set of system arobjects, called components, resident on each
node and provides a system-wide or local service within a2 node. Each subsystem was designed
based on a generic server structure for ArchQOS in order to provide reliable and fast service of the

requested system functions.

5.3.1 Objectives
The internal structure of a subsystem should meet the following objectives:

e Jarious types of decentralized resource management schemes should be easily
implemented in a subsystem.

¢ A subsystem should be able to serve concurrent requests efficiently, fairly and without
deadiocks.
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e A subsystem should be able to support replicated arobjects to increase availability of its
service.

» Each component should be able to stop independently and resume its activity without
major disturbance.

e Within a component, concurrent operation invocation should be easily provided if the
service requests can be handied simultaneously.

5.3.2 Internal Structure of Subsystems
The internal structure of subsystems is based on a generic server madel which can provide system-
wide service in a reliable manner. The server model was used to provide the template for different

types of servers and to reduce the design complexity of subsystems.

The server model consists of service protocols, which define a complete interaction between a

client and all servers providing the same service, and a server structure.

Our view of system service at the subsystem level is depicted in Figure 5-3.

Service Class: SC, oo --- 0 :A Group of Arobjects

Server: SC i An Arobject Instance

//\

Operations: .
a12 alk : Operations
Protectad :1— — —
Resources:

Processes &

O O _--O Private Objects

Figure 5-3: Relationship among Service, Server, and Arobject
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At the subsystem level, a reference name is given to each service class which provides a particular
service, namely a set of functions for an ArchOS'facility. A service cluss 1s implemented by a set of
service instances, namely servers. A server is formed by an instance of an arobject and is normally
replicated at each node. However, a different set of servers can also form a service class, since a

reference name can be shared by these servers.

In general, services are replicated on each node, and system-wide resource manageiment is
performed by using the service protocol to define interaction between client and server as well as

inter-server communication.

5.3.2.1 Service Protocol
A subsystem provides a service or a set of services for a client. A client can locate a suitable server
for a requested service and get the resuit back by initiating the service protocol. The service protocol

consists of three protocals: binding, invoking, and inter-server protocols.

The binding protocol defines how a client determines a suitable server for a requested service from
a set of servers. For instance, we can apply the following binding policies for certain types of

resource management such as creating a new instance of an arobject or a process in the system:

e First Fit (FF):
The first server from the matched servers will be selected to submit a service request.

e Random Fit (RF):
A server from the random selection will be used to submit a service request.

¢ Best Fit (BF):
One of the best matched servers will be used to submit a service request.

e Best Effort Fit (BEF): o -
The best matched server according to the best-effort (decision making) algorithm will be
used to submit a service request.

it should be noted that RF protocol can be used without any interaction with potential servers, while
FF protocol may need at least one reply from the servers, BF needs all replies, and BEF needs all or

some replies.

The invoking protocol defines how a client can invoke an operation at a specific or non-specific
server(s) and can get the service result. In ArchOS, a client arobject can invoke an operation
synchronously as well as asynchronously. Thus, it is possible for a client to invoke an operation at

multipie servers simultaneously.
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e synchronous/specific server request:
A client can invoke an operation on a specific arobject by using a Request pnimitive.

e synchronous/non-specific servers request:
A client can invoke an operation on a specific service class by using a RequestAll
primitive followed by the necessary GetReply primitives.

e asynchronous/specific server request:
A client can invoke an operation on a specific arobject with blocking itself by using a
RequestSingle primitive.

e asynchronous/non-specific servers request:
A client can invoke an operation on a specific service class by using a ARequestAll
primitive.

The Inter-server protocol defines how an individual server can exchange control or status
information to perform a service. Thus, the inter-server protocol is dependent upon the nature of the
service. For instance, local resource information of a server can be distributed to all other servers
periodically by invoking a suitable operation for a service class. This type of multicasting can also be

performed by using a requestall primitive.

5.3.2.2 Generic Structure for a Server
The generic structure for a server is based on the nature of service the server provides and the
characteristics of an arobject. Since any system service should be highly available, a server itself

must increase its availability by avoiding nécessary blocking periods and deadiocks.

Each arobject has at least one process which has responsibility to create the necessary task force
to provide a service. The number of processes may be created dynamically depending on the request
load. On the other hand, a certain server might have a fixed number of processes to handie a fixed
number of tasks. Thus, the server structure is related to the nature of the service v;hich is provided by

the cooperating arobjects.

We can summarize the generic structure for a server in Figure 5-4.

e Type I: a single process
The initial process accepts, requests, and processes them ane at a time. That is, the
execution order of the operations will be totally serialized. Each operation invocation will
be handled by a corresponding procedure or function within the initial process.

e Type \l: functionally partitioned workers
The initial process creates a number of workers according to the number of operations.
Coordination between workers is handled by the workers. Each aperation invocation is
accepted by a specific worker process assigned to do the task. Thus, a worker issues the
Accept primitive to wait for a specific type of requested operation.
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Figure 5-4: Generic Server Structures for a Server

e Type Wl: replicated workers
The initial process creates a number of replicated workers to accept "any” operation.
Coordination between workers is handled by the workers. Workers can be placed at
different nodes, so parallel execution of requested operations might be possible. Each
worker issues an AcceptAny primitive to wait for an invocation request.

e Type IVa: a manager with a fixed number of workers
The initial process creates a fixed number of workers as a service task force and
becomes a manager of them. Coordination between workers is handled by the initial
process and each worker may or may not be assigned the same task.

e Type IVb: a manager with variable number of workers
The initial process acts as a manager of workers and accepts all incoming invocation
requests and creates necessary workers on demand. Coordination between workers is
handled by the initial process and each worker may or may not be given the same
functionality.
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6. ArchOS System Design Description

This chapter contains the ArchOS system design description and describes the internal architecture
of each ArchOS subsystem. From a conceptual point of view, the ArchOS operating system consists
of the ArchOS kernel and a set of subsystems composed of a set of cooperating system arobjects.
While the ArchOS system architecture description in the previous chapter discussed higher-lavel
views of the system structure, this chapter focuses on how each subsystem is built based an

cooperating arobjects.

6.1 Overview

The ArchOS system design description discusses the internal architecture of ArchOS tocusing on
the ArchOS kernel and subsystems. The ArchOS kernel provides basic mechanisms for ArchQOS

facilities and each subsystem implements each service facility of ArchQS.

As discussed in the previous chapter, the ArchOS kernel consists of two layers: the lower layer is
the Aipha subkernel and the higher layer is the ArchOS base kernel. On top of the base kernel, a
kemel'arobiect can be managed to increase the concurrency within the base kernel. ArchOS
provides a system-wide arobject environment on top of the ArchOS kernel. Since ArchOS facilities
are implemented by cooperating system arobjects, they can be modified, added, or deleted without

having a major cost.

A subsystem consists of a set of cooperating arobjects which can provide the actual services to
clients. In general, each component of the subsystem is replicated on each node. so a system-wide
service is provided as the result of interaction among components. Each component also has the
responsibility to recover from so-called "clean and soft failure” [Bernstein 83) at a node.3The chosen

recovery sequence maintains the consistent state of the server.

In the following sections, we describe the ArchOS kernel and each ArchOS subsystem focusing on

its internal structure, key algorithms, and inter-server protocols.

3We limit our discussion of resiliency against "clean and soft” failure in which some of nodes of the system simply stop
running and loose the contents of main memory, but the contents of stable storage used by the falled nodes (computers)
remain intact.
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6.2 ArchOS Kernel

6.2.1 Overview of Kernel

The ArchQS Kernel is a virtual machine that provides basic service mechanisms necessary to
support the ArchOS operating system. The abstractions provided at the kernel interface are not all be
implemented directly, however. Thus, the kernel as presented to clients is built by projecting
components of the kernel's internal structures and enhancing those projections as necessary to

achieve the client interface.

Internally. the kernel has a logical structure that is in lhree levels. The lowest level, called the
executive level, interfaces directly to the hardware and provides mechanisms to control physical
resources and some internal kernel resources on a per-node basis. These mechanisms inciude
management of physical memory, processor dispatching, virtual memory. communications, process

management, and primitive objects.

Above the executive is the subkernel. The subkernel implements some support required for clients
that is not required within the executive level, and it provides primitive support for inter-machine
coordination. n particular, it supports client synchronization primitives and primitive transaction

coordination. The current implementation af the subkernet for ArchQS is known as Alpha.

The subkernel supports the kerne! layer, which then implements the client interface. The kernel
layer contains suppc rt for compound transactions. and support for arobjects. The kernel layer also
provides such access as is necessary for clients to subkernel and executive services. For example, a
client's request to create a process will result in the kernel layer making a request on th2 executive
layer that a process be dispatched from a pool of waiting pracesses. The pool 1s not visible to clients,

however. The view at the client level is of a new process being created.

Figure 6-1 shows a diagram of the kernel structure.

6.2.2 ArchOS Alpha Subkernel

The Alpha subkernel will be described ih terms of its major functions. The logigal diagram above
presents basic dependencies: higher level functions use lower level ones. A system as complex as
ArchQOS does not always exhibit such a clearty hierarchical set of dependency relations. however
Thus, the diagram should not be viewed as describing all allowable interactions. The subkernel's

functions will be described from the lowest levels, moving up.
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ArchQS Kernel:

Kernel Arobjects

Base Kernel:

Arobject/Process Management

-y Arobject Operation Invocation
Alpha

Subkernel:

Primitive Transaction Coordination
Client Synchronization
Executive:

Virtual Memory: Z File Mechanisms
Paging, Recovery .
Swapping

Invocation Mechanisms, Virtual Memory Support
Inter-process Communication

Hardware

Figure 6-1: Logical Structure of ArchOS Kernel

Hardware:
The Alpha subkernel 1s designed ftor a wide class of machines. The lirst implementation of the xernel
requires that machines ljave standard virtual memory with fixed size pages, and may have one or
several processors. Duties are assigned to processors on a functional basis. For example, one
processor might handle client processing, one might be assigned to basic cperaung system

processing, and one to inter-node communication.

Physical Memory Management:
Two sets of services are provided within the kernel to manage phyq‘cal memory. The mast basic
mechanism provides a pool of pages These pages can then be used for client processes objects or
for specitic kermel functions. The number of free pages at any time serves as input to the paring
system, which will page out portions of client processes and objects if the number of free pages s

ever insufticrent. Thus, at any time it is possible to allocate a page quickiy in response to a Jdemand.
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A second mechanism controls alfocation of memory in portions that are smuller than a page. Thisis
called the kernel heap. The kernel heap must use the page allocation mechanmism. Areas {rom the
kernel heap are used to contain basic kernel data structures, such as object control blocks and

message headers.
Communications:

Within the kernel, simple communication services offer direct communication with other nodes and,
where applicable, access to network services such as broadcast. These services are on a best-effort
basis. The kernei's communication services will transmit a message, for exampie, but ..}l not take
any action to ensure its arrival. Higher level software, such as the transaction coordination and
interpracess communication mechanisms, must use specific techniques for retransmission, duplicate

suppresston, and other such requirements.

In multiprocessor nodes, the communications mechanisms permit receipt of messages on the basis
of log:caf criteria. Thus, it is possible, for exampie, to transmit a message addressed to a transaction,
instead of to specific nodes. If a node's communication system recognizes that the transaction has
visited the node, the message is passed to the operating system processor. Otherwise, it is
discarced.

Kernel Process Support:
Within the kernel, a pool of unassigned processes is maintained. Each such process. called a kerne!
process, is partially constructed. Kernel processes are dispatched for several purposes. For
example, a kernel process may be used to handle an incoming invocation. to control the virtual
memory system, or it may assume a client process identity. This last case occurs in response to a

request by a client to create a process.

Several specific mecharnisms are required to support kernel processes. Cornvantignal mechiniams
are used to switch process contexts and dispatch processes. Low-level synchronizaticn mechumsms
are provided: semaphores to control mutual exclusion, and memaoryless events to ndicate
occurrence of repeating conditions. One such event is used to indicate changes n the state of the
unassigned process pool. When this event is caused, a maintenance process 1s awoken. If the pool
'S low, this process will create more processes for the pool; /f the pool s 10c hiyh, come proceszes
from the pool will be discarded. This mechanmism permits fast Jicpatch when processes ar2 needed

ty performing poot maintenance in the background.
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Invocation Mechanisms, Interprocess Communication:
Each component of a client’s system, whether process or object. 1s assigned an independent address
space. Interactions between components may require modification of the address space to make
parameters and messages accessible to thewr recipient. Furthermore, such data must be examined by
the kxernel. to determine their destination. A set of mapping mechanisms support these requirements
by permitting the kernel to map and remap pages between address spaces and 'nto the «ernel’s

address space.

invocation of operations on primitive objects i1s accomplished by modifying the invo«ing process's
address space to make the object's data accessible. The invoking process then executes code within
the object. In the case that the object is not resident on the same machine as the invoking process. a
process s dispatched from the pool on the machine containing the abject. and it s this pracess that

represents the calling process during the invocation.

Messages may be transmitted between system components by executing send and rece:ve
operations at the level of the client interface. These operations are then transiated by the kernel
software into modifications to the address spaces of the communicating processes and. where
necessary, communication between nodes supporting the communicating processes. Support for

this is provided in the subkernel’s virtual memory mapping mechanisms.

Virtual Memory:
A system component’s virtual address space can exceed the amount of availapnie memory. Also,
objects may not be accessed for long periods. Paging, swapping, and primitive e system
mechanisms support the necessary abstractions. Ailthough it 1s not visible to an ArchOS client, a
process or an object may have components of its address space, or (s entire state. wnitten o

secondary storage.

Although there is no specific need for direct client access to a file zystem in arn =biect system
support 's provided to permit a client to modify portions of its address space  Thus. 't s possible ma
a portion of a client address space into a portion of a specific file. This permits construction of files
that are larger than the maximum address space. The support provided also permits files. especially

ccce files, to be shared between system components.

Client Synchronization Mechanisms
Mithin the kernel, semaphores and events permit control of access to «ernel struciures, cuch as

control tiocks. Simdar access controls and concurrency control mechanisms must b provicded to
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clients. However. use of such features depends on the internal state of chent objects. and chent
objects can be swapped from main memory. while kernel structures cannot. A set of higher level
mechanisms use the kernel's synchronization mechamisms to implement facihties than enable chents

to construct mechanisms that function simiarly.

Primitive Transaction Coordination:
Transaction support for ArchQOS is implemented in two portions. Higher level requirements, such as
support for compound transactions., are implemented above the subkernel. The subkernel
/mplements only support ‘or the most 2lementary nested transactions. Support is provided for object
operation invocation, transaction completion -- either commt or abort -- and orphan elimination. A
new technique discussed in [Mckendry 85] permits bounds to be placed on the time until lock release

as a result of aborted transactions. This feature will assist in scheduling transactions in real time.

6.2.3 ArchOS Base Kernel

The ArchOS base kernel uses facilities implemented by the Alpha sub-kernel to provide basic
mechanisms for ArchQOS facilities, thus creating a uniform arobject environment tor system arcbjects.
Since the ArchQS kernel is not a traditional monolithic kernel, a set of kernel arbojects are running on

the top of the base kernel and supporting necessary low-leve! functions for ArchOS facilities.

The major functionality of the base kernel can be summarized as follows:

e Creation and destruction of kerne! arobjects and processes
o Communication between kernel arobjects
o Dispatching mechanism for the time-driven scheduler
e Address space management for time-driven virtual memory manager
e Low level synchronization between processes and interrupt/irap
In other workds, the basic kernel is responsible to pertorm local resource managermaent tor crecting

and destructing kernel objects and for invoking its operations. Any remote or system-wide resource

management decisions are decided based on coordination among kernel arobjects

6.2.3.1 Kernel Arobjects and Processes

The ArchCS base kernel provides creation and destruction of a kernel arobject i 13 nece A kornel
arobject 1s similar to a normal arobject except that it resides in a kernel address Space: and shyres th.
address space among the other kernel arobjects. Simiiarly, all of the: vernet grocooney hare thaar

address space even though each process lgically belongs to a specific nernul arctiyect
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Binding of a kernel arboject/process and a reference name s also managed in the same way.
Unlike a client's reference name, a kernel arobject's reference name 1s treated as a "“well-known"

name representing a service class.

The following normal ArchOS primitives are used to manage kernel arobjects and processes.

arobject-id = CreateArojbect(arobj-name [, init-msg])
process-id = CreateProcess(process-name [, init-msg])
val = KillArobject(aid)

val = KillProcess(pid)

aid = SeltAid()

paid = ParentAid(aid)
pid = SelfPid()

opid = ParentPid(pid-x)

val = BindArobjectName(aid, arobj-refname)

val = BindProcessName(pid, process-refname)
val = UnbindArobjectName(aid, arobj-refname)
val = UnbindProcessName(pid, process-refname)

aid = FindAid(arobj-refname)

ad = FindPid(process-refname)
aid-ist = FindAllAid(arobj-refname)
pid-ist = FindAlPid(process-refname)

AlID arobject-d The unigue identification of the instantiated arobject.
PiD process-id The unique identification of the instantiated process.

ARGCEJ-NAME aroby-name
The name of arobject to be instantiated.

PRCCESS-NAME process.name
The name of process to be instantiated.

MESSAGE ‘*init-msg
A pointer ta the initial message which contains initial parametars for the INITIAL

process.

ARQOBJ-REFNAME aroby-refname
The requested reference name for an arobject qiven by aid

PRCCESS-REFNAME process refname
The requested reterence name for a process given by pid

AIC-LIST aid-list  The iist of corresponding aid's.
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PID-LIST pid-list The list of corresponding pid's.

AROBJ-REFNAME arobj-refname
The reference name of related arobject(s).

PROCESS-REFNAME process-refname
The reference name of related process(es).

It should te noted that the above primitives are :dentical to the ordinary ArchOS primitives clients
can use. but only 'ocal creation and destruction of kernel argbjects and processes are supported in
the ArchOS kernel. When an instance of a kernel arobject or process is created, an ordinary arobject
or process cescriptor will be created and managed uniformly at the kernel. (The description of the

arobject/process descriptor is given in Section 4-1).

6.2.3.2 Kernel Communication Management

The ArchOS base kernel provides a local communication mechanism among kernel arobjects. A
xernel arobject can invoke an operation at a single destination arobject or at multiple arobjects

providing the same service name (i.e., sharing the same reference name).

trans-id = Request(arabi-id, apr, msg, reply-msg)
trans-id = RequestSingle(arobj-id. opr. msg)
trans-id = RequestAll(arobject-name, opr, msg)

pid = GetReply(trans.id, reply-msg)

ftrans-id, requestar, opr) = AcceptAnylcpr, msg)
{trans-id, opr) = Accept(requestor, opr. msqg)

ptr-mds

CheckMessageQ(qtype, recuestor, opr, req-trans-id)

trans-id

Reply(pid, req-trans-id, reply-msg)
TRANSACTICN-ID trans-id
The transaction id of the transaction on whose benaif the request 1s being made.

AlD aroby-id The unique id of the receiving arobject.

)
OPE-SELECTOR opr
The name of the operation to he ~erformed.

*MESSAGE *msq A pomnter to the messaqge which nontains the parametors of the oporation 0 be
performed. The message to *he dectination archpect must not nontan any
pomnters (1 e, call-by-value semantics muat b used)
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REPLY-MSG *repiy-msg
A pointer to the reply message.

MSG-DESCRIPTORS *prt-mds
Pointer to a list of the message descriptors selected by the specified selection

criteria.
MSG-Q qtype This indicates either "request-" or "reply-" message queue.
AID requestor The aid of the requesting arobject.

QPE-SELECTOR opr
The operation to be performed. The "opr"” parameter can be a specific operation
name or "ANYOPR".

TRANSACTION-ID reg-trans-id
The transaction id of the corresponding RequestSingle or RequestAll primitive.

6.2.3.3 Policy Management

The policy management provides system functions to add, delete, and modify the policy definition
module in ArchOS. Since the placement of the policy definition module is a major issue in terms of
the system performance, ArchQS allows a client to specify the location by using a policy definition
descriptor. The policy definition module consists of a policy body and a set of policy attributes. Both
the policy bedy and attributes can be modified at runtime.

val
val

SetPolicy(policy-name, policy-def-desc)
SetAttribute(policy-name. attribute-name, attribute-value)

pcdd = AllocatePDDY()
val = FreePDD(pdd)

BCCLEAN val TRUE it the specified policy was set properly; otherwise FALSE.

PDD policy-def-desc
A pointer to the policy definition descriptiaor.

ATTRIBUTE NAME attribute-name
The name of attributc to be set.

ATTRIBUTE-YALUE attnbute-value
The actual value for the attribute.
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The SetPolicy prnimitive links a user-defined policy definition module to the ArchOS base kernel. The
SetAttribute primitive set a specific value(s) for its one of attribute. Since a policy definition descriptor

is maintained in the base kernel, any access to the actual policy body or a value of its attribute can be
easily made.

The AilccatePDD primitive allocates a policy definition descriptor in the base kernel and freePDD
releases the allocated deécriptor.

Polvcy def. module A

ArchQS Kerne!

Policy def. module B

Base Kernel
Policy def. ass:;//// Policy def. module C
- >
-

Figure 6-2: Policy Dclirntion Module and PDD

6.2.3.4 Time-driven Scheduling Management

The interface between the scheduler and the remainder of the ArchOS kernel is a simple one in
which the scheduler acts as a simple object providing operations and maintaining its gwn scheduiing
data base. including its scheduling queue. These operations, of course, will not be available to the
ArchQS client, but will be used internally by ArchCU to generate scheduling requests whenaver
needed. The operations defined by the scheduler are as follows.
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pid-list

H

Scheduie()

pid-tist = RequestSwaplist()

SetScheduleinfo(pid)

Deschedule(pid)
PID-LIST pid-list  The list of pids.

PID process-id The unique identification of the instantiated process.

The Schedule() primitive returns a list of the process ids (pids). The first pid indicates a process to
be executed at this time and the following pids are candidates for the following scheduling point. No
parameters are passed, and the scheduler makes its decision directly from the information within its

data base.

The RequestSwaplist() primitive returns a list of the pids which indicates candidates for the

following swapping decisions at the virtual memory manager level.

The SetSchedulelnfa primitive enters the necessary scheduling information 'for the cpecified
process to the scheduler. The scheduler places the process pid and alil its scheduling parameters
into its catabase and prepares for making the scheduling decision required when the next Schedule
operation is performed. This decision-making process operates continuously, concurrently with the

applicaticn processing, preparing its next scheduling decision.

The Desctedule primitive removes a process pid from its queue, updating its current scheduling

database to prepare for the next Schedule operation.

The Scheduler will use the interrupt mechanism in the processor running the ArchOS kernel to
invoke other xernel mechanisms when it makes relocation decisions or must make decisions
regarding process scheduling with respect to other nodes. In addition, the interrupt mechanism will
be used to interrupt the kernel and application processing when sufficient time has elapsed that the

current scheduling decision must be reconsidered.
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6.2.3.5 Address Space Management

The base kernel provides a number of primitive, though powertul mechanisms for constructing,
manipulating, and accessing the definitions of the virtual address spaces of processes. A process’
virtual address space (or simply address space) is illustrated in Figure 6-3. An address space consists

of four non-overlapping regions:

1. Kernel Region:
The Kernel Region is identical for all processes, and is only accessible when executing in
kernel mode. It contains all of the kernel code and data structures. The kernel is shared
by all processes and (at least in the initial version of ArchOS) will be non-pageable.

2. Private Region:
The Private Region is unique for each process, and it consists of five segments: Kernel
Stack Segment, User Stack Segment, User Heap Segment, User Data Segment, and User
Text Segment. Each of these segments will be discussed below.

3. Shared Region:
The Shared Region is unique for each arobject, but shared by all processes within an
arobject. This region contains all of the arobject’s private abstract data type instances,
along with the code for accessing and manipulating them. It consists of a variable
number of segments, one (or more) for each instance of a shared abstract data type, plus
a Shared Text Segment and Shared Headers Segment. Each of these diiferent types of
segments will be discussed below.

4. Kernel Interface Region:
The Kernel Interface Region is quite small, and primarily contains the code and data
areas needed for switching between user and kernel modes. This region is shared by all
processes and is non-pageable.

£

The Kernel Region and Kernel interface Region are of fixed size, and the virtual to physical address
maps for these regions, as well as their protection attributes, do not vary from address space to
address space (process to process), or during the lifetime of an address space. As a result, these two
regions are constructed automatically whenever a new address space is created, and never aitered
thereafter. The remaining portion of an address space is comprised of the Private Region and Shared
Region. The relative sizes of these two regions can vary from arobject to arcbject. However, within
an arobject, all processes share the same Shared Region, and hence all processes within a single

arobject will have identically sized Private and Shared Regions.

The Private Region and Shared Region each consist of a number of {(non-overlapping) segments. of
vyarying sizes and types. The different types of segments have corresponding protecticn attnibutes.
Some segments are required for each address space, while others are optional. Some segments can
be expanded (assuming they have space to grow), while others have a fixed size once allocated. The

relative locations of the various segments are somewhat constrained, and as a resuit. the order in
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Kernel Region

\y
Kernel Stack \
User Stack
Free
Private Region
User Heap
User Data
User Text /
Shared Headers N\
Free

Shared Normal

Shared Atomic

Free Shared Region

Shared Permanent

Shared Atomic

Shared Permanent

Shared Normal

Shared Text \Y

Kernel Interface
Region

Figure 6-3: Virtual Address Space (One per Process)

which the segments can be (dynamically) allocated is similarly constrained. Each allocated segment
has an associated page set, which is used as the paging area for that segment (see Section 6.7 for a
description of page sets). The type of page set associated with a segment (temporary, permanent, or
atomic) depends upon the type of the segment.
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Private Region Segmentls

The Private Region contains five distinct segments, whose relative locations must be as shown in

Figure 6-3:

Kernel Stack Segment:

The Kernel Stack Segment has a fixed size, which is the same for all address spaces, and is always
located at the top of the Private Region. This stack is only accessible while in kernel mode. and it is
“substituted” for the User Stack (see below) as part of the operation of switching to the kernel. Since
the xernel is not pageable, the Kernel Stack Segment is also not pageable. Like the Kernel Region
and the Kernel Interface Region, the Kernel Stack Segment is constructed automatically whenever a

new acdress space is created, and never altered thereafter.

User Stack Segment:

The User Stack Segment is a required segment, and is located immediately below the Kernel Stack
Segment. It can vary in size from address space to address space, and during the lifetime of an
adcress space. The User Stack Segment is the only segment in the Private Region which grows
downward. All other segments are either fixed size or grow upward to include larger virtual
addressas. The User Stack Segment contains the subroutine stack (including parameters and local
variables) while a process is executing in user made. Hence, this segment must be both readable and
writable from user mode. The User Stack Segment is pageable and should be associated'with a

temporary page set, which is to te used as the paging area.

User Text Segment:

The User Text Segment is also a required segment, and it is located at the bottom of the Private
Regicn. It contains the code to be executed by the process, and hence its protection is set to allow
only execute access while in user mode. The User Text Segment can vary in size from address space
to address space, but once allocated it never changes.“This segment is pageable and shculd be
assoc:ated with the permanent page set which contains the code for the process. Mote that cince the
User Text Segment is not writeable, only "“page-ins'” (and no 'page-outs”) will ever be required.
Furthermore, in order to reduce primary memory requirements, the Time -Driven Virtual Memory
Subsystem (see Section .6.10) will arrange for User Text pages to be shared among all processes

executing the same code on a single node.

User Data Segment:

4 . . ~
Due g !imtations in the lanquaqge compilers and linkers. the User Text Doqment may conimn the coge 'or the entire
arst:ect. rather than just the code required by a single process. In that case the User Texd Segmeats for all procas.os aathin g
single arnbject mi have the same size.
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The User Data Segment is not strictly required. but it will aimost always be present. It 15 located
immediately above the User Text Segment, and should be aliocated after the User Text Segment has
been specified. The User Data Segment contains the “global’, initialized variables that are used by
(and private to) the process. It is both readable and wntable while in user mode. The User Data
Segment ¢an vary in size from address space to address space, but once ailocated it never changes.
SThis segment is pageable and should be associated with the permanent page set which contains the
initialized data for the process. However, only (initial) page-ins will ever be performed using this page
set, s0 as not to destroy the definitions of the injual values. All page-outs and subsequent page-ins

will be to the same temporary page set used as the paging area for the User Stack Segmem.'5

User Heap Segment:

The User Heap Segment is not strictly required, but it too will aimost always be present. It is located
immediately above the User Data Segment, and should be allocated after the User Text Segment and
User Data Segment have been specified. The User Heap Segment contains the dynamically allocated
variables that are used by (and private to) the process. It is both readatie and writable while in user
mode. The User Heap Segment can vary in size from address space to address space, and during the
lifetime of an address space. Note that since the User Heap Segment grows upward while the User
Stack Segment grows downward, expansion of these two segments cause additional space to be
allocated frcm oppasite ends of the (single) free area within the Private Region. The User Heap
Segment is pageable and should be associated with the same temporary page set which 1s used as

the paging area for the User Stack Segment.”
Shared Region Segments

The Shared Region contains five distinct types of segments, although there can be multiple
segments of a particular type. Also, the placement of those segments within the Sharaed Region is
somewhat more flexibie than the placement of the segments within the Private Region. The generai
structure of the Shared Region is illustrated in Figure 6-3. Note ihat the entire Shars} Region i

optional. and will only be present if the arobject defimition includes one or more private sbstract data

sAs tn the case of User Text Seqments, limtations n the language compilers and linkers may cause the User Data Segments

for Al processes mthin a singte arobject to have the same size.

rJ‘Au!ttt)le senqments can use the same pane set for paging purpoces, by mapping the wirtual page cddicues sthin the
+300us segments directly nnto the same page numbers aithin the page <et e artual page « gets mapped o Lage numines
»  Since seqments (o not overlap. the corresponding paging areas il not nvertap erither  See Section G 7 for mare details on

the yse of the caqge set facihties

7
't desired. 1 separate (temporary) page set could be used, aliovwang paqing ta different ihicks, or even ditterent nodes.
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type dehimtions. Also note that the Shared Region is identical for all of the processes (address
spaces) which belong to a single arobject, and are resident on a particular node. As a result, the
Shared Region should only be moditied in a single address space on a given ncde, in order to have all

of the related address spaces on that node updated simultaneously.

The types of segments that can appear in the Shared Region are the following:

Shared Text Segment:

There 's a single Shared Text Segment, and 1t must be present whenever the Shared Regiun 2xists.
It is located at the bottom of the region, and contains the code which defines the permitted operations
on the arobject’s private abstract data types. The Shared Text Segment permits only execute access
while in user mode. However, it is assumed that this code will always be entered “indirectly’. by tirst
determining which abstract data type instance is to be operated upon, and then directly invoking the
requested operation with the specified instance as a parameter. Furthermore. it is assumed that
operations will only be directly invoked gn instances which are located on the local node.8The Shared
Text Segment can vary in size from address space to address space, but for a given arobject. once it
has been allocated it never changes. This segment is pageable and shouid be associated with the
oermanent page set which contains the coce for the operations defined on the arobject’'s private
abstract data types. Note that since the Shared Text Segment is not writeable, only page-ins (and no
page-outs) will ever be required. Furthermore, in order to reduce primary memaory requirements, the
Time-Oriven Virtual Memory Subsystem will arrange for Shared Text pages to be shared among all

processes executing the same code on a single node.

Shared Headers Segment:

There s a single Shared Headers Segment, and it too must be present whenever-the Shared Region
exists. It is located at the top of the region, and contains the “‘header” information describing all
instances of private abstract data types that have been created within the arcbject. This houder
infarmaticn includes the node on which each instance is located, and the address(es) cf tha “harad
Normal Segment, Shared Permanent Segment, and/or Shared Atomic Segment associated with ¢ach
instance. The header information is used whenever operations are to be invoked cn specified

abstract data type instances, and hence the Shared Headers Segment allows read-only access while

8»‘~bstrac! data type instances can be distributed throughout the nodes af the computer system aithauah 2 single nstance
~il always be completeiy contained wilhin a single node. The indirect nvocation of an operation un an absbiact Juta type
nstance ‘nyolves first using the ntormation i the Shared Headers Segment t) determine which naode contamns the nstance n
queztcn if the instance s on the local node. the operation can be invoked dr2clly However of the nslance s an aremaote
node 1 form of remote procedure call (RPC) 15 used m order to nvoke the operation an th:t remaote node. See Dechon

RPCATT tor more detnls an 'he use of the RPC facility to implement distnbuted private abstract ata types
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in user mode. The Shared Headers Segment can vary in size from address space to address spdce,
and during the lifetime of an address space. However, within a single arobject. ali address spaces will
have identical Shared Headers Segments. The Shared Headers Segment is the only segment in the
Shared Region which grows downward. All other segments are erther fixed size or grow upward to
include larger virtual addresses. The Shared Headers Segment is pageable and should be associated
with a temporary page set, which is to be used as the paging area. Note, however, that the Shared
Headers pages are shared among alil of the processes of a single arobject, which are executing on a

particular node.

Shared No r-r.nal Segments:

There can be multiple Shared Normal Segments withuin the Shared Region, one for each abstract
data type instance which contains ‘normal’’ shared data. These segments can be located almost
anywhere within the Shared Region. above the Shared Text Segment and below the Shared Headers
Segment. However, successive segments will normally be allocated immediately above the Shared
Text Segment and any other existing Shared Normal, Shared Permanent, and Shared Atomic
Segments. The lfétiMe of a Shared Normal Segment may be shorter than the litetime of the acdress
space, since abstract data type instances can be created and destroyed dynamically. Shared Normal
Segments permit both read and write access whtle in user mode, since these segments contain the
normal shared variables which define the current states of the abstract data type instances. In
addition to being dynamically created and destroyed, Shared Normal Segments can be expanded
{grown), to support the dynamic ailocation of shared normal variables. Note that since these
segments grow upward while the Shared Headers Segment grows downward, the free area near the
top of the Shared Region (immediately betow the Shared Headers Segment) will be aliocated from
oppostte ends, reducing the chances of conflict. Shared Normal Segments are pageable and should
be asgociated with temporary page sets, which are to be used as the.paging arecs “Note that Shared
Normai pages, like Shared Headers pages, are shared among all of the processes of a single arobject,

which are executing on a particular node.

Shared Permanent Segments:
Shared Permanent Segments are almaost identical to Shared Normal Segments, except that they
contain the “permanent’ shared variables which define the current states of the abstract data type

instances. Also, each Shared Permanent Segment is asscciateu with a permanent page set, which is

git 1S possible to use a singie temporary page set as the paging area for all Shared Normal Segmen!s, as «eii as the Libared
Headerg Segment. However, the use of separate page sets allows the individual paging areas to be located an the Sam nodes
as their caorresponding abstract data type instances, increasing officiency In addiion, it makes it nasier to “lieze™ Shared
Normat Seqiments, and to move them around within the Shared Reqion  (This latter operahon may be required in grder 1o vand

contlicts ahen axpanding existing segments }
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used as both its paging and permanent storage area. '
Shared Atomic Segments:

Shared Atomic Segments are identical to Shared Normal and Shared Permanent Segments in most
respects. except that they contain the ‘atomic’’ shared variables which detine the current states of
the abstract data type instances. Because of this, each Shared Atomic Segment is associated with an
atomic page set, which is used as both its paging and atomic (permanent) storage area.''In order to
determine which portions {(variables) within Shared Atomic pages have been modified by various
transactions. direct writing to the Shared Atomic Segments is nct permitted while in user mcde {these
segments are read-only in user mode). Instead, the special AtomicCopy primitive must be used in
order to modify any atomic variables. As each madification is made to a Shared Atomic page, the
AtomicCopy primitive also records the modification in the associated atomic page set. This permits
the modification to later be committed or aported under control of the Transaction Management
Subsystem. Note that since each modification is immediately written to the atomic page set, there wil
never be any need for the Time-Driven Virtual Memory Subsystem to page-out Shared Atomic pages.
Also. page-in operations only require the Shared Atomic page to be read from the atomic page set.
since the Atomic Page Set Manager will ensure that the page, as read, will reflect all outstanding
{unccmmitted) modifications. '?For more details on the handling of atormic objects and transactions,
see Section TMSEC.

Address Space Management Primitives

The base xernel pravides primitives for creating and destroying address spaces, for allccating,
freeing, growing, and moving segments within an address space, and for accessing and modifying the

information assoctated with each virtual page within an address space {mapping, flags, and time of

1
OAgam. it 19 possible to use a single permanent page set to hold all of the Shared Permanent Segments, but the same
considerations as for Shared Normal Segments make the use of separate page sets a bit more attractive.

11 , . ,
in thig case too it 1s possible, though slightly less attractive, to use a single atomic page set to hold all ¢f the Shared
Atomic Segments. -

12"he consistency of the atomic data values accessed and modified Dy 2 transachion 1s not quarantesed hy theco faciities,
uniess the norrect locking protocaols are followed. [tis assumed that the appropniate read and witte ook s are et tor sach
atomic dala item that s to be accessed or modified, respectively  Also note that transaction aborts require notit g the AMtomic
Page Set Manager of the abort, and aiso undaing all of the aborted modthcations n all of the attected Lhared Atemic puges
This fatter nperation 13 bect accomphished by simply Hagqing all of the affected pages as “invithd” 50 that the next attempl to
access them wml result in 2 page-in operation. Since the madifications associated wmth the aborted tiansaction Have henn

remaoved from the atamic paqe set. the page-in operntion will read the pronerly modihcd contents of the page
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last access).'sThe actual address space management primitives provided by the base kernel are the

following:
val = ASCreate(asid [, nvp-shared])
val = ASDestroy(asid)
val = ASActivate(asid)

vpa = ASAllocate(asid, seg-type, nvp, gpsid [, desired-vpa])

val = ASFree(asid, vpa)

val = ASExpand(asid, vpa, nvp)

val = ASMove(asid, vpa, desired-vpa)
ste = ASGetSTE(asid, vpa)

ste = ASNextSTE(asid, vpa)

val = ASSetMap(asid, vpa, ppa [, nvp])
ppa = ASGetMap(asid, vpa)

val = ASSetFlags(asid, vpa, flags [, nvp])
flags = ASGetFlags(asid, vpa)

val = ASSetTime(asid, vpa, time [, nvp))
time = ASGetTime(asid, vpa)

val = ASSetPTE(asid, vpa, pte [, nvp])
pte = ASGetPTE(asid, vpa)

(gpsid. pnum) = ASGetGPSID(asid, vpa)
(asid, vpa, ppa) = ASFindShared(gpsid [, pnum])

BOCLEAN val TRUE it the specified operation is completed successfully; otherwise FALSE.

VIRT-PAGE-ADDRESS vpa, desired-vpa
A virtual page address within an address space.

SEG-TABLE-ENTRY ste
A descrintor for 2 segment within an address spage. It includes the segment type
{seg-type), location (vpa), size (nvp), and associated page set (gpsid).

PHYS-PAGE-ADDRESS ppa

The physical page address in primary memory, to which a virtual page address is
mapped.

PTE-FLAGS flags The set of (BOOLEAN) flags associated with a particular page in an address
space: USED, MODIFIED, VAL!ID, EXISTS, and COPIED.

13No facilities are provided for accessing or modifying the protection codes gaverning access ta the various pasts of an

address space. These protection codes are set automatically whenever the address spiice 1s created, and whengever new
segments are allocated. There should never be any need to modify them exphicitly.




137

VIRT-TIME time The (approximate) virtual (CPU) time at which a particular page in an address
space was last accessed.

PAGE TABLE-ENTRY pte
A descriptor for a particuiar page n an address space It includes the
corresponding physical page address (ppa). Hlags, and 1ast access time {fime).

GPSID gpsid Global Page Set ID, which identif'es the page set associated with a segment. It
incluces the ID of the logical disk containing the page set, the page set type
(TEMPORARY. PERMANENT, or ATOMIC), and the unique D of this page set
within the logical disk.

INT pnum A page number within a page set, corresponding to a virtual page within an
address space segment.

ASID asid Address Space 1D. which identifies the address space to be operated upon. The
corresponding process (D can be easily obtained from an ASID. and vice versa.

INT nvp-shared The number of virtual pages (size) of the Shared Region.

SEGMENT-TYPE seg-type
The type of the address space segment to be allocated: USER-STACK, USER-
TEXT, USER-DATA, USER-HEAP, SHARED-TEXT. SHARED-HEADERS, SHARED-
NORMAL, SHARED-PERMANENT, or SHARED-ATCMIC.

INT nvp The number of virtual pages involved in the operation.

On Error: Error conditions are indicated by the use of special return values. The details
concerning the precise nature of an error condition are provided in the Kernel
Error Block.

The ASCreate primitive creates a new address space, corresponding to a newly created process.
'“The acdcress space ID (asid), which is closely reiated to the process 1D (allowing 2asy translation
back and forth), must be specified as part of the operation. This asid will be used to identify the
address space In all subsequent operations. The size of the Shared Region (nvp-shared) must also
be specified if this is the first address space belonging to the corresponding arcbject to be created on

this node. Otherwise it is optional.‘SSince there is only a fixed, maximum amount >f buffer space

14
1t can also be used 0 recreata an address space far a process ~hich had been completely ‘swapced sut ', but mil soon
be required to run again. See Section 6.10 tor more details about process swapping.

154. -

5Smce the sizes of the Kernel and Kernel Interface Regions are fixed. specitying the tize of the Shared Hegion wil o
determing the size of the Private Peqion (there are no other regions in an address space). Also 1 ansther Lt drens <pace from
the same Jrobject Already exists Hn this node, the size of the Shared Reqgion 1s drendy ¥nown all wddrecs —paces fnom the

same arohject have identical Shuared Regions) The arobject 1D can be easily determumed fram the 07 ror ts auneo ey
process :0).
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availabte for stonng address space detimtions. the ASCreate primitive can fail f too many address
spaces have aiready been dehned. ®The ASCestroy primitive can be used to destroy a previously

defined address space

ASAcnvate s used when switching processes. 't makes the specified address space (as/a) the
currently active one, 1 e i switches the processor to that address space. Note that since the Kernel
Region is identical for all address spaces. only the Private and Shared Regions are actually atfected
by this switch. The processor continues to execute the same code within the xernel as it was prior to
switcring accress spaces. Depending upon the architecture af the system’s memory management
hardware. activating an address space may require the explicit loading of many registers within the
Memory Management Unit (MMU). The management of these MMU registers is solely the
responsibility cf the address space management routines, especiaily ASActivate Cf course, MMU
register maragement 1s simplitied considerably if the MMU itselt handles the loading of its mapping

reqisters. in the manner of a cache.

ASAuocate allocates a new segment within an existing address space. The type of segment
(seg-'y,ce) determines many of its charactenistics. In most cases only one segment of a particular type
1s permitted within an address space. However, muitipie SHARED-NORMAL, SHARED-PERMANENT.
ang SHARED-ATOMIC segments are allowed. At the time a segment is allocated. its imtial size (nvp)
and asscc:ated page set (gpsid) must be specxfied.”ln most cases the locaticn of a new segment is
arther ‘ixed or can be determined automatically, assuming the various segment types are allocated in
the precer order. '®However, the exact location for a new segment can be specified (desired /pa),
whenever necessary.'gASA/locare returns the location (vpa) of the newly allocated segment. For all
segmenis except USER-STACK and SHARED-HEADERS, this is the location ¢t the first (lowest
adcress) page in the segment For USER-STACK and SHARED-HEADERS, the returned location 1s
the last page in the segment. The returned vea mil be used to identify the segment in subsequent
nperatons. ASAlocate will fail, returming BAD-VPA. if any conflicts are detected. such as attempting

to allocate an already allocated segment type, or gverlapping an existing segment.

1
6One remedy for this i3 to swap out and then destroy one of the already existing address spaces.

17
This imgires that the associated page set must already exist.

a’he <Ny restiicions 4 the ordenng of ceqgment allocaticns are that USER HEAP must folow HSER DATA sivch in turn

nust feiinw JSER TEXT ang SHARED NCRMAL, SHARED-PERMANENT. or SHARED ATOMIC wenments must be aliocated

atter "ne SHARED-TEXT seqgment.

9°hns should only be necessary when constructing the Shared Reqion on 1 new node. <o 'hat it matches the Lhared

Reqion *or In arobject that already exists on cther nodes.
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ASFree deletes an entire segment. indicated by vpa. within the specitied address space (asig). Only
SHARED-NORMAL. SHARED-PERMANENT. and SHARED-ATOMIC segments can be [reed.
mASExoana increases the size of an existing segment by the specified number of pages (nvp). It will
fail it there i1s insutficient space for the segment to grow by the amount indicated. ASAMove changes
the location of an existing segment from voa to desired-vpa. Only SHARED-NORMAL. SHARED-
PERMANENT, and SHARED-ATOMIC segments can be moved.2'ASMove will tail it the new location

for the segment would overlap another existing segment.

ASGe!STE returns a descriptor for the segment which contains the spec:fied virtual page (vpa).
This gescriptor incdicates the segment’s type (seg-type), location (vpa). size (nvp). and associated
page set (gpsig). BAD-STE is returned if the specified page is not within one of the existing Private
Region or Shared Region seg.nents.z"’ASNex:STE is similar to ASGetSTE. except that it returns a
descriptor for the next (higher acdress) segment which follows, but does not contain, the specified
virtuat page. Specifying vpa = 0 will cause the descriptor for the first (lowest address) segment in the
Shared Region {SHARED-TEXT) to be returned. or the descriptor for USER-TEXT to be returned if
there 1s no Shared Region. BAD-STE will be returned if the specified page 1s within or beyond the last
segment of the Private Region (USER-STACK). ASNextSTE is useful for scanning through all of the

segments (and pages) which constitute an address space.

ASSetMap sets the virtual to physical mapping for virtual page vpa. to physical page ppa.
Cptionaily, a range of nvp virtual pages, beginning with vpa, can be mapped to contiguous physical
pages. beginning with ppa. ASGetMap returns the physical page address (ppa) to which the specified
virtual page (vpa) 1s mapped. BAD-PPA is returned if the mapping has not been previcusly defined
using ASSetMap (or ASSetPTE). ASSetFlags sets all of the (BOOLEAN) flags associated with the
specified virtual page (vpa). Optionally, the flags for a range of nvp virtual pages. beginning with vpa,

can ail be <et to the same values (flags). The available flags are:

e USED: The virtual page has been accessed. This flag helps determine which pages
belong to the working set of a process (See Secticn 6.10).

o MCDIFIED: The virtual page has been modified. This flag indicates that the page must be
written to the associated page set before the physical page frame can be reused.

N
This nagpens as a result of destioying abstract data type instances.
21
‘Aoving of segments can be 1 useful way to recover from ASExpand faiures.

2 - - g
For sur purposes here. the Kernel Slack Segment o5 not considered a part of the Pryate Region oty the UGER
segments are
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e VALID: The physical page address to which the virtual page is mapped s valid, 1.e. the
page IS in primary memaory.

e EXISTS: The virtual page exists in the associated page set, i.e. the page has been written
some time in the past. This flag heips avoid page-in operations when a newly allocated
virtual page is first accessed.?

¢ COPIED: The virtual page (within the User Data Segment) has been "copied” to the
temporary page set. i.e. the temporary page set contains a newer version of the page than
the permanent (imtial data) page set. This flag only applies to the User Data Segment,
and it is used to indicate which page set is to be used when paging-in the virtual page.“

ASGetFiags returns the set of flags associated with the specified virtual page (vpa).

ASSetT/me sets the time of last access for the specified virtual page (vpa) to time. The time value is
in virtual (CPU) time units. Optionaily, the last access time for a range of nvp virtual pages, beginning
with vpa. can all be set to the same value of time. ASGetTime returns the last access time for the _
specified virtual page. NEVER is returned if the page has never been accessed ASSetPTE s
equivalent to ASSetMap, ASSetFlags, and ASSetTime combined It sets all three items of the virtual
page dsscriptor(s) (ppa, flags. and time) to the specified values (pte). Similarly, ASGetPTE is
equivalent t0 ASGetMap, ASGetFlags, and ASGetTime combined. ASSetPTE and ASGetPTE are

provided as a convenience, for use when entire page descriptors must be maodified or retrieved.

ASGetGPSID returns the global page set 1D (gpsid) and page number (pnum) associated with the
specified virtual page. This is the page set |ID and page number to be used when paging-in or
paging-out this virtual page.258A0~GPSID and BAD-PNUM are returned if the specified page is not
contained within any of the existing segments in the Private Region or Shared Region. ASFindShared
searches for the specified page number (pnum) from the given page set (gpsia), to see if it 1s aiready
resident in primary memory, and in active use within one of the existing address spaces.26lf pnum s

not specitied, the search is for any active page from the given page set. !f the search is successful,

2331 1sn t .nccrrect to page-in a nonexistent page. it would simply be read as all zeros (see Section 57) However he

EX1STS Hag heips avoid the overhead of the (unnecessary) page-in operation. ‘Whether a nonexistent panse 's autiahized to zero
on tirst access or simply left yndetined depends upon the type of s2agment it belongs to. User 3tack Seqment pages can be left
undefined. but pages in most other segments should be initialized to zero. ’

Q‘The COPIED flag 18 essentially another name fcr the EXISTS flag, as it applies to the User Data Seqment Each User Data
Segment page ‘s »nown to ex'st in the permanent (inthial data) page set. The only question 1s ~hether a newer version also
ex:5ts N the '‘emporary page set.

LY
Z“JSGefGP'JJD takes the CCPIED flag into account when determining the page set to be used for pages in the User Cala
Segment.
6., . . the o
his nvalseg searching *hrough the existing ddress spaces for any seqments having apsid 15 the corrnoponding page
38t The 1,31 Dare descnptor ‘ar the page correspanding to pnurm s then checked 1o see i it 13 VALID




141

the address space 1D (asid) and virtual page address (vpa) of the first encountered matching entry s
returned. along with the corresponding physical page address (ppa}. Otherwise BAD-ASID, BAD-
VPA. and BAD-PPA are returned. ASFingShared aids in the handling of “shareable’” segments, such
as the User Text Segments and all of the Shared Region segments. In particular, it can help

determine if page-in or page-out operations are actually required.
Address Space Management Data Structures

The information describing the existing address spaces is contained within kernel data structures
called address space descriptors. These descriptors are linked together in groups according to the
arobjects tc which the address spaces belong, as shown in Figure 6-4. This aids in the handling of
the Shared Regicns of address spaces, especially their construction and modification, since it allows

all of the related address spaces o be updated *'simultaneously".

Arobject List

ERE] ta1l ! nead /

; 1 L ————> _ _—
; ERE] 3l head é—— prev | nex: |¢g 7| prev| next [¢g prev | nexs |z
< < N

Address Address Address
i Space Space Space

| Descriptor Descriptor Descryptor

Figure 6-4: Arobject Address Space Lists

The structure of each address space descriptor is illustrated in Figure §-5. It basically consists of a
st of Segment Desc: otors, which describe each of the segments contained within the address
space. Mote that since there can be varying numbers of Shared Normal, Shared Permanent, and
Shared Atomic Segments, each of these types has its own (sub)list of segment descripters.  Any
segment type which is not present in an address space would be indicated by a page count of zero
(nvp = 0). Each segment descriptor includes a pointer (pta) to the page table, which descrit;es the
state of the individua! pages of the segment. Note that each address space within an argobject will
actually have its own set cf page tables, even for the Shared Region. This is hecause the Shared
Reqion can be accessed and used in very different ways by the different processes cf an arcbject.
and :t '3 impgortant to Jdetermine the virtual memory “working sets’” on a per process per addrass

s0ace) basis (see Secticn §.10).
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Address Space Descriptor

I srev next
asrd Segment Page Table
User Stack Seyment Descriptor N ) .
voaAAi avp I j0s1d l pta ppa flags time

User Heap Segment Descriptor

Jser Data Segment Descriptor

Jser Text Segment Nescriptar Jirtual Page Descriotors

Shared +eaders Segment Descriptor

Shared Tex: Seyment Descriptor

\
Shareg Normal Seqment Descriptor next —_— Shared Normal Seqgment Descriptor next ‘—]
Shared Permanent Segment Nescriptor nex?t
Snared Atomic Segment Descriptor next [‘~> Shared Normal Seqment Nescriptor next

Figure 6-5: Address Space Descriptor

The other main data structure used in the management of address spaces is the Shared Page Set
List, illustrated in Figure 6-6. The scle purpose of this structure is to improve the efficiency of the
ASFindShared primitive.Before paging-in or paging-out a potentially shared page, i.e. one from the
User Text Segment or any segment within the Shared Region, the Time-Driven Virtual Memory
Subsystem must first check (using ASFindShared) to see if the required page is already in main
memory and in use by some other process. if so, the paging operation can be avoided. Given the
global page set ID (gpsid) for the potential paging operation, ASFindShared will look for that gpsid in
the Shared Page Set List, and then check each associated Seqment Page Table to see if the page in
question is ever listed as "“VALID". Thus, the Shared Page Set List contains an entry for every page
set corresponding to a User Text Segment or Shared Region Segment, in any existing address space.
Associated with each entry is a list of all the segments (indicated by their address space [Ds, virtual

page addresses, and page table pointers), which share the use of that page set.

~

‘BS-nce the Shared Page Set List could be constructed salely from the contents of *he Address Space Descriptors, its use is
nct sirctly required. However, it greatly increases the efficiency of searcthing far shared pages.
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Shared Page Set List

as1d vpa pta l neat I

gpsd head —9[ asml vpa ] p:alnex:]‘_‘—\)[ asid | vpa pta nen:]—'—\)

grpsid head —“9 ns\d[ vpa l p:alnex:]

Figure 6-8: Shared Page Set List

6.2.3.6 Synchronization Management

The low-level synchronization mechanisms for arobjects and for basic 1/0 handling tunctions are .
provided at the base kernel. These primitives are designed as a local synchronization mechanism, so
remote invocation is not supported at this level. All higher-level synchronization must be performed

by using the communication primitives.

The following primitives are provided at the base kernel:

evtcnt = Sigsend(event-var)

evicnt = Sigrec(event-var, timeout)
evtent = Sigrecall(event-var, timeout)
evtent = Sigabort(event-var, abort-code)

EVTCNT evtent The counter value of the specified event variable.

EVENT.VAR event-var
The event variable consists of a waiting queue of client processes and an event
counter,

TIMEQUT timeout The timeout value should indicate the maximum execution tme for this signal
primitive including the waiting time.

ABORTCGCDE abort-code
An integer value which indicates an abort code.

The Sigsend and Sigrec primitives are hasically similar to the V- and P-operations of an inteqger
semaphore. However, the Sigrec primitive will be timed out if the corresponding wiynal (2g.. a

hardware interrupt) is not generated. A Sigrecai primitive 1s similar 1o Sigrec and used for recaiving




144

ail stored event signals. A Sigabort primitive can be used to unblock the waiting process with an error

condition.

6.3 Arobject/Process Management Subsystem

The Arobject/Process Management Subsystem is responsible for providing arobject/process
management facilities in ArchOS. The subsystem consists of a Arobject/Process Manager and its
worker processes on each node. The Arobject/Process Manager provides a system-wide facility in
corporation with the base kernel. The workers are provided to perform actual work or decision

making among cooperating Arobject/Process Managers in the system.

The Arcbject/Process Manager primary responsible the following operations:

e Creation and destruction of an arobject and process

e Freezing and Unfreezing of an arobject’s or process's activities

e Binding and unbinding of reference names for arobjects and processes

e Allocation and deallocation of private data objects

e internai access mechanisms to fetch and store any data objects for an arobject/process.
e Recovery management for atomic arobjects

It should be noted that many functions can be invoked locally by the base kernel. This subsystem is

necessary to provide the service for remaote invocations.

6.3.1 Arobject/Process Management

An Arobject/Process Manager exists on each node and manages a fixed number of workers. Every

worker can periorm the foilowing service functions:

e Ccordinate with the other Arobject/Process Manager to perform the best assignment
decision for creation of a new arobject/process instance.

e Propergate a new reference name to the other Arcbject/Process Manager.
The basic components of the arabject/process subsystem is shown in Figure 6.7,

‘W/hen a new instance of an arobject or process i1s created, a system-wide unique identitier called an
arobject «d (aid) or process id (pid) is created and is also guaranteed to be unigue over the lifetime of

the arobject or process. For a new instance of an arobject, an aronject descriptor is created and
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Known Arobject ‘Table (KAT)

A/P Manager O

\ : Reference Name Hashtatle [RNH)

Workers

Figure 6-7: Components of the Arobject/Process Subsystem

registered in the known arobject table in the kernel. For a new process instance, a process descriptor
is also allocated and linked to its arobject descriptor.

The arobject descriptor contains the following information ta control its arcbject components:

e Arobject id (aid):
An aid is a fixed-length descriptor consisting of current node id, birth node id, and focal
unique id. Aid is used to identify a destination arobject where a request operation will oe
invoked, so the current node id and birth node id are included for reducing the searching
process and migration process.

e Parent aid:
Its parent’s aid.

s Arobject status:
Status of the arcbiject.

e Freeze/Unifreeze event variable:
An event variabie to controt .

e A set of reference pointers to private object descriptors:
A private object descriptor contains the data associated with the arobject’s private object,

namely "processes”, "shared abstract data types”, "statistics data object”, "message
queue”, etc.

For instance, suppose that arobject A has two processes (INITIAL and P.) and one shared private
object (801) and a new instance of A is created at node X. After the INITIAL process ic <tarted, it
creates process P‘ at node Y. Then, the relationship among the major kernel chpscts are shown n

Figure 6-8.
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Figure 6-8: An example of Arobject Descriptors

At node X, an arobject descriptor is allocated for an instance of arobject A. A process descriptor for
INITIAL and a shared object descriptor for the header segment and for SO, are linked to the arobject
descriptor. At ncde Y, there are also an arobject descriptor for A and a process descriptor for P1
which is linked to the arcbject descriptor. Although there is no shared private object created at node
Y, a shared object descriptor is also allocated for the header segment and iinked to the arobject

descriptor.

it should be noted that the message queue of arobject A is only allocated on node X. Thus, when P1
attempts to accept a request message, a remote operation is invoked to fetch a message from the
mes3age queue at node X. i there i3 no acceptable request mesaage in the quoue, .01 vl ko blocked
and placed in the waiting processes’ queue.

6.3.1.1 Arobject/Process Assignment Policy
When creation of a new instance of an arobject or process is requested at a non-specific ngde, the
arobject/process manager selects the best node according to the current “arobject/process

assignment policy”.

The assignment policy, like other user definable policies, can be set by a system desigrer. In order
to reduce system overhead. the policy definition module for the assignment policy s placed n

Arobject/Process Manager.
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Without creating a new paolicy definition module, the Arobject/Process Manager can provide the

following assignment policies.

e First Fit (FF): The first A/P manager which replies the creation request will be selected.
e Random Fit (RF): A A/P manager from the random selection will be used.
e Best Fit (BF): One of the best matched A/P manager will be selected.

o Best Effort Fit{ BEF):

6.3.1.2 Life cycle of Arobject/Process

The life cycle of an arobject depends upon whether the arobject is an atomic or nonatomic. When
an instance of an arobject is instantiated, the arobject instance becomes active. If an arobject is
atomic, it can be inactivated and remained on stable storage. On the other hand, f an arobject is
nonatomic, it cannot be inactivated and it must be dead when it is killed. Atomic and nonatomic

arcbject can be frozen for monitoring or debugging purpose.

The lite cycle of process is similar to the arobject’s one. When an instance of a process is created, it
becomes ready and runnable. Once the time-driven scheduler deciedes to run a process, it becomes
running and the vprocess may block due to I/0 waiting or scheduler's preempticn. Like arobject, a
process will be dead when it is killed and it can be aiso frozen. The life time of a process instance
depends on the life time of its arobject. When the arobject is killed, all of its processes will be also

killed by the system. Thus, there will be no frozen processes left in its arobject.

The iife ¢ycle of an arobject and process is depicted in Figure 6-9.

6.3.1.3 ArchQS primitives

The fcllowing ArchOS primitives are supported for arobject/process management for a client.
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Figure 6-9: Life Cycle of an Arobject and Process
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arobject-id = CreateArojbect(arobj-name [, init-msg] [, node-id])
process-id = CreateProcess(process-name [, init-msg] [, node-id}])
val = KillArobject(aid)

val = KiliProcess(pid)

val = GlobalKillArobject(arobj-id, kill-options)

val = GlobalKillProcess(pid, options)

aid = SelfAid()
pid = SelfFid{)
paid = ParentAid(aid)
ppid = ParentPid{pid)

vali = SetErrorStack(errblock, blocksize)
val = FreezeArobject(arobj-id, options)
val = UnfreezeArobject(arobj-id, options)
val = FreezeProcess(pid, options)

val # UnfreezeProcess(pid, options)

fval = FetchArobjectStatusiaroby id, dataob)-id, buffer, size)
sval = StoreArabject(aroby «d. dataobj d. buffer, size)

fval = FetchProcessStatus({pid. datacty 1d. bulfer, size)

sval = StoreProcess(pid, datacb id, bulfer, size)
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BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.
NQDE-ID node-id The node id indicates the actual node which will be stopped.
AlID arobj-id The unique arobject id of an arobject instance.
PID pid The process id of the target process.
GKILL-OP Kill-options
The options indicate various control options. For example, it can indicate whether

the caller stops every time after killing a single process or not.

FREEZE-OPT options
The options indicate various selectable flags such as a iimmeoui freeze/unfreeze

flag.
INT fval The actual number of bytes which were fetched.
INT sval The actual number of bytes which were stored.

DATACBJ-ID dataobj-id The dataobj-id indicates the private object or system control status of the
target arobject/process.

BUFFER *buffer A pointer to the buffer area for storing the returned data object value.

INT size The size indicates the buffer size in bytes.

A CreateArobject primitive creates a new instance of an arobject at an arbitrary node or a specified
node. Similarly, a CreateProcess primitive creates a new instance of a process in the arobject. The
selection of a node is made automatically by ArchOS unless overridden by the Create operation.
Upon arobject creation, the arobject’s INITIAL process is automatically dispatched. An optional set of
parameters can be passed to the INITIAL process when the arobject is instantiated by using an initial

message (i.e., "init-msg"”).

The KillArobject and KillProcess primitives remove a process and arobject instanca respectively. An
arobject may be killed only by one of its own processes (suicide allowed, no murder). In order to kill
another arobject, the target arobject must have an appropriate operation defined within its
specification so it can kill itself. A process can be killed only by a process which exists in the same

arobject instance.

The SelfAid primitive returns the requestor's arobject id and the FurentAig primitive returng the
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parent’s archject id of the specilicd iuobject. The Led2id prnmiive teiunnis the procesa id (pid) of the

requestor and the ParontPid primitive returns the parent’'s pid of the the specified process.

A SocfrrorBleck primitive sets an crror block in a procasa’s addrens apree A uner orror bloek
consists of a head pointer and a circular queue. The head pointer contains a pomnter to an =ntry
which contains the latest error information in the circular queue. After the execution of this prinutive,
a client can access the detalled error information from the specified error block. A FreezeArobject
primitive stops the execution of an arobject (i.e., all of its processes), and a FreezeProcess primitives
nalts a specific process for inspection. An UnfreezeArobject and UnfreezeProcess primitive resumes
a suspended arobject and process respectively. While a process is in a frozen state. many of the
foctars ascd for makang scheduling doecisions can he celectively ignored. For inziancea a timeont

value wil Be wynured by specifying a proper flag in the Freeze primitive.

A Ferck pnimitive inspects the status of a running or frozen arobiject or process in terms of a set of
frozen values of private data objects. The specific state of the arobject or process will be selected by
a data object id. The state includes not only the status of private variables, but also includes process

contro! information.

A GlooalKill primitive can destroy an arbitrary arobject or process in the system.

6.3.1.4 Creation and Destruction of Arobject/Process

A client can create a new instance of arobject at any node in the system by issuing the
CreateArobject primitive. The first argument, arobj-name, contains three values: The first value
contains a file name for the image of the shared region and the second value points to a file for the
image of the private region of its INITIAL process. The last section contains a table of entry points for
light-weight processes. Note that the light-weight process is available for kernel arobjects.

For instance, arobject name A may contains {"/usr/test/a.arobj", "/usr/test /pQ.proc”, nill}.
When a client executes 'CreateArobject(A, msg, Y)", at.first the base kernel determines whether the -
target node is local or remote. Since this is a remote invocation request, it looks up the A/P
manager's reference name hash-table and determines the destination A/P manager’s AID. Then, the
client sets up a request message for the remote A/P manager and issues a proper invocation request.

When the remote Communication manager’s Netln worker receives the request packet, it placed in
the target A/P manager's request queue. If one of its workers is already waiting on the incoming

invocation request, the request message will be placed directly into the worker’s message buffer.
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Once the worker exccutes ihe CreateArobzect prmhive, the virtual addics space Tor awotyot A
created by reading “/usr/test/a.aroby” and “Zusr/test pO.proc” files. A new archyp ot desenptor e
also allocated and 1its AlD is returned to the worker. Then, the worker returns the resull mestage to s
A/P manager and the A/P manayger torward the result to the caller's Az mana ger Hhen e onginal

caller receives the resuit from the local A/P manager.

The sequence of interaction between two A/P manager is depicted in Figure 6-10.
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Figure 6-10: Creation and Destruction of an Arobject and Process
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6.3.2 Name flanageiaont

An archjpect/proc- s manager mantuns bindmag informat.oa in a nsh teble Mhen a eefer nee
name 1s bound to a caller, the Caller 5 WrwucCt process manayger reqgisters s name it Then the
ManAayer S worker kol propdygdte 1S sty acruss the opntomouaing woe 1o iy - Gteanie s o G

using a RequestAll primitive). The htetime of a binding is the same as the Wfetine of an arobject or

process instance.
To find one or all arobject/process instances from its reference name. the archject/process
manager searches its own hash table and it there 1s no =ntry there. then it inquires from the other

managers.

The toflowing ArchOS fnnutives are supported for name management for a clicnt.

val = BindArobjectMame(aid. aroby-refname)
val = BindProcessName{pid, process-refname)
val = UnbindProcessName(pid, process-refname)
val = UnbindArobjectName(aid, arobj-refname)
aid = FindAid(arobj-refname [, preference])
pid = FindPid(process-refname {, preference])
aid-list = FindAllAid(arobj-refname [, preference])
pic list = FindAllIPid(process-refname [, preference])
AlD aid The arobject id.
PID pid The process id.

AID-LIST aid-list  The list of corresponding aid's.
PID-LIST pid-list  The list of corresponding pid’s.

AROBJ-REFNAME arobj-refname
The reference name of related arobject(s).

PRQOCESS-REFNAME process-refname
The reference name of related process(es).

PREFERENCE preference

The preference can specify a search domain such as “INTERNAL",
"EXTERNAL", "LOCAL", "REMOTE", "INTERNAL-LOCAL", “INTERNAL.
REMOTE", "EXTERNAL -LOCAL", "EXTERNAL-REMOTE"

The BindAropjectName and BindProcessName primitives bind the requested instance of an arobject
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Cf prOC:-05 10 chorence aame This bindding adllows an arobpect or 1 proces, 10 e mere than ooe
roterance nune. or a single reference name can be bound muoltiple arobpect or procs-g metances. To

canca the current oinding. 2 process must use the approprnate noad primitive,

A F 3D primitive returns the unicue «d (1 .. atd or pid) of the given arobject or process i a specihc
search domain. A seaich domain can be specified with respect to all of the mntcrnal arobjects.
external arobjects. a local node. a remote node. or a reasonable combination of among four. 1f more
than one instance uses the same reference name. the unique id of any one of them will be returned. A
T oA 2 onmutive, on tho other hand. returns all of the wd's and pid’'s which correspond to the Given

reference name

0.3.3 Muivate Object lanagement
Private occject management aliows a clien! process to allocate and deallocate an instance of a
private aoustract data type at any node. An Arobject/Process manager mamntains a ist of private

object descriptors under its arobject descriptor to keep the data associated with it.

Since an object type can be one of Normal. Permanent, and Atomic, the private object manager
must coordinate with a page set manager (see Section PAGESET) to allocate a proper type of page

set to create a new instantiation of the abstract data type.

if a remcte allocation is requested, the creation of a new private abstract data type must be
coordinated between the destination’s Arobject/Process manager and the one with the INITIAL
process. Since every process share all private segments and should have a uniform view of local and
remote instances, the shared header segment must be updated by the Arobject/Process manager at
the INITIAL process's node. When a proper update is done, updated part of the shared header

segment is propagated to the other Arobject/Process manager.

object-ptr = AllocateObject(type-name, object-type, parameters. [, node-id})
val = FreeObject(object-ptr) o
val = FlushPermanent(object-ptr, size)

OBJECT-PTR object-ptr
A pointer to the allocated private data object.

1}

OBJECT-TYPE abject-type
The object-type indicates the name of a private abstract data type.

BOOLEAN val TRUE if the object was released successful; otherwise FALSE.

NODE.ID node-id Node identification. An actual node may be designated. or a node selection



cotenon may Le desgoatod ey the curcent node. any onods eccept the con ot
node. any node. or 4 specific node).

INT size The number of bytes which must be Hushed into permanent storage.

An AliocateQtyect primitive allocates an instance of a private abstract data type at any node and a
FreeCCpject prirmtive deallocates the specihed instance. A FlushPermanent primitive blocks the caller

until the specihiert data object is saved in non-volatile storage.

6.3.4 Recovery Nanagement

The irotyect process manager (s responsible for restaring atonne arobects winch have at leagst
one urivate atonic data object in the event of node failures. Since all private atemic cbjects are kept
on a corresponding atomic page set. the arobiect/process manager will coordinate with the page sat
subsystem to resume the crashed atomic aropject by recreating its initial process with the pre-crash

image of the private atomic data objects and germanent data objects, it any.

it should be noted that it is still an application designer's responsibility to determine what recovery

action must take place based on its atomic and permanent data objects.

6.4 Communication Subsystem

The communication subsystem provides intra- and inter-node message communication
mechanmisms to support a system-wide, location- independent operation invocation for cooperating
arobjects. An invocation request can be initiated by referring to the destination arobject's id and the
operation name from anywhere in the system. Ailthough a single invocation is initiated through the
arobject 'd. multiple invocation can be initiated by referring to a reference name of araobjects which
offer the same service. In this case, a calling arobject may continue to perform its activity and receive

one or more resuits by using a GetReply primitive.

The communication subsystem also interacts with the transaction subsystem to coordinate the
necessary transaction management. For instance, a Request primitive is treated as an elementary
transaction consisting of three steps: a sending part of the request, an invocation linking part, and a
racewving part of the request. Then, the linking part links the requestee’'s Accept. computation, and
Reply. Since all message activities in this transaction are defined as compound transactions and the
invocation linking part is defined as an elementary transaction, it is possible for the requestee's

computation to be a nested elementary or compound transaction of the top-level transaction.
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6.4.1 Message Header and Body
A message consists of header and body parts. The header part is not writable from a client and only

the body part can be set by a chient.

The message header contains the foillowing data:

e Transaction id

e Requestor's arobject 1d

o Destination arobject «d

e Destination operation name
e Number of arguments

e Size of message in bytes

it shculd be noted that even though message typing is not supported at runtime, type checking of
messages tetween requestor and requestee can be done solely at compile time. Since message
communicaticn preserves message boundaries, it does not offer a “stream-aoriented” communication

intertace at this level.

6.4.2 Message Queue

There are two types of message queues associated with arobject and process instances. A
request-queue 1s allocated for an instance of an arobject. When a new arobject instance is created,
the arobject/process manager creates a request-queue associated with its arobject descriptor. That
1S, the body of the message queue is kept in the kernel at the running node of the initial process. A
reply-queue s allocated for an instance of a process. When a process issues an invocation request to

an arobject. its results will be placed in the reply-queue.

In both message queues, each entry 1S represented by a message descriptor and can be checked

without accepting the message itself.

6.4.3 Communication Manager

When an arobject invocation request is issued at a caller’s site, the communication manager sets up
a proper header part for the message packet. The message then is sent to the destination arobject. If
the destination arobject 1s in a remote node, the remote invocation protocol is used and the

communication manager becomes the monitor for the protocol. Similarly, when a process accesses a
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sharcd provate data at a remote node, a remote procedure call s ussd and the conunumication

manager 2xecutesits protocol

6 4.3.1 Components of the Communicalin Manager
Each Commumication Manager works with a par of network 170 workers called, "Metin” and

"NetQut” and a group of "Stub™ workers,

Metin and NetOut workers are resposible to receive and transmit a message packet betwoeen two
nodes A Stub worker s used to perform a remaote invocation request for a chared privated data
object  Whan a remoto invocahon is recaived by the Communication Managoer, it assigos the gentual
work to the stub worker  Then, the stub worker calls the target procedure with the arquments and

returns the rasylt packet to the caller A sequence of remote invocation s described i Section

6.4 3 2 ArchQS primitives

The following ArchOS pnmitives are supported for communication managaement for a client

trans-id = Request(aroby-id, opr. msg. reply-msg)
transd = RequestSingle(arobij-id. opr. msq)
trans-«d = RequestAill(arobject-name, opr, msg)

prd = GetReply(trans.id. reply-msqg)

(trans id, requestor, opr) = AcceptAny(acc-opr, msg)
(trans-id, opr) = Accept(requestor, acc-opr, msq)

transd = Reply(pid, req-trans.id, reply-msg)
ptr-mds = CheckMessageQ(qtype, selector, selector id)
val = CaptureCommArobject(arobj id, commtype, requastor, req opr)

val = CaptureCommProcess(pid, req opr)
val = WatchCommArobject(arobj-id, commiype, requastor, req opr)
val = WatchCommProcess(pid, req opr)

TRANSACTION ID trans-id
The transaction id of the teansaction on whose behalf the request ia being made.

AlD aroby id Tha unique id of the receiving arobject.

OPE SFLECTOR opr
Tha nama of tha apacation 1o be petformed.

MELGAGE *msg A pointer to the maqasaga which containg the parametors of the aperation to he
performedd The meansage (0 the dostinaton arobyect muedt not contiun any
pomters (i o, call by valuo semantics mast be ased)
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REPLY-MSG ‘reply-msg
A pointer to the reply message.

ARQBJ-REFNAME aroby-refname
The reference name of the receiving arobject(s).

OPE-SELECTOR acc-apr. req-opr
The naime of operation to be performed. The “opr" parameter can be a specific
operation name or "ANYOPR".

TRANSACT!CN-ID reg-trans-id ,
The transaction id of the transaction ¢n whose behalf the request is made.

MSG-CESCRIPTORS *prt-mds
Pointer to a list of the message descriptors selected by the specified selection

criteria.

MSG-Q gtype. commtype
This indicates either “request-" or "reply-" message queue.

BOOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

AlD reguestor The aid of the communicating arobject.

The Reguest primitive provides remote procedure cail semantics in which the requesting process
invokes an operation by sending a message and blocks until the receiving arobject returns a reply

message. !dentically, if the receiver arobject is the same arobject, a local operation will be invoked.

The ReguestSingle and RequestAll primitives can send a request message and proceed without
waiting for a reply message. The RequestSingle primitive provides nonbiocking one-to-one
communication and, the RequestAll primitive supports one-to-many communication. The requesting
process may thus invoke an operation on more than one instance of an arobject or process with one
request. To receive all of the replies, the GetReply primitive may be repeated until a reply with a nutl

body is received.

The GetReply primitive receives a reply message which has the specific transaction id generated by
the preceding RequestAll primitive. If the specific reply message is not available, then the caller will

be blocked until the message becomes available.

The process responsible for an arobject operation receives a message using the Accept primitive.

Using the selection criteria specified, the operating system selects an eligible message from the




arobject s input queue and refurns it The proceus operale Soon e mesagoes o ponding withy ateply
when processing has been completed. If no suitab! message i in the requast messige queue, then

the caller will block until such a messaye becomes available.

The AcceptAny primitive can receive a message from any arobject instance with any operation (1.e..
"ANYCPR") or a specified operation reguest. The pnmitive can return the requestor’s transaction id,
specified operater. and requestor's aid. The Accept primitive can recerve a message from a specific

requestor arobject and returns the requestor’'s transaction 1d and the requested operator.

The CheckMessageQ primitive 2xanunes the surrent status of an incoming mensage qurzuz without
blociang the cillar procees The primitive muct specify 4 measage quen beos dher Moo ot
aqueue” or "renly-quoue” The rongue st aquene quete s ol of the nan coeapted reocopalmer o
1s allccatad for =ach arolject instance. The regly qu e mamntains all of the non raad reply, mas,. 5
and 1s assigned to 2very process Instance. A message can be selected based on the sendor s
arobject id. operation name, and/or transaction 1d. it more than one argument 18 given, anly
messages which satisfy all of the conditions will be returned. If no corresponding message exists in a

specified message queue, a "NULL-POINTER" wilil te returned.

6.4.4 Remate Invocation Protocol

A remote invocation protocol is used to control the invocation of an operation on a remote arobject.

In a simple remote invocation case, two packets will be exchanged between two nodes: ong is a
request packet and the other is rep/y packet. A simplified version of protocol sequence is shown in

Figure 6-11.

When a remote request primitive is issued by a client, the base kernel pass its request to the
communication manager. Then, the communication manager places a request into an outgoing

packet queue and gives it to a "NetOut" worker. The NetQut worker simply initiates the actual output

activity over the net. Note that the NetOut waorker can be replaced by a simple procedure cail within

the communicaiton manager if the context switching is significantly large.

When a remote site receives the request packet, the "Netin" worker of the communication manager
places the packet in its incoming packet queue and notify it to the communication manager. If the
destination arobject is ready to accept the request, the communication manager moves the actual
message to the destination arobject’'s receiving buffer. Otherwise, the communication manager

places the message in the destination arobject’s request queue.
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Remote Invocation Protocol

At Node Y
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6.4.5 RPC for Shared Private Objects
When a client invoke an operation on a shared private object exists on a remote node, the
communication manager's stub worker performs the actual invocation and returns the result to the

caller.

At first, the private object invocation request to a is checked by looking at the shared object table in
the shared header segment. If the target object is in a remote node, a remote invocation request,

InvokePrivate will be sent from the communication manager.

When the remote "Netin" worker receives the packet, it checks availabiility of the stub workers. it
one of stub workers is idle, it assigns the actual invocation request to the stub worker. When the stub
worker completes the invocation request, it returns the result message to the communication

manager. Then, the communication manager forwards the resulit packet to the cailer.
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Figure 6-12: Interaction Seguence for a Remote Invocation Request

The basic sequence within in a remote communication manager is shown in Figure 6-13.
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Figure 6-13: Remote Procedure Call Sequence at a Remote Communication Manager
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6.5 Transacuun Subsystem

The transaction <abayctom manages heo types of trancactions compoond tranasactions and
elementary transactions. The transaction subsystem allows a client to nest a compound transaction
of an «lementary trunsaction in any combination. By ucing the nested Clementary transactions. a
client can use a traditional "nested transactions” mechanism [Moss 81]. A compound transaction
can be used on a “compensatable” atomic arobject. [Sha 85, Tokuda 85] Thus. the transaction
subsystem must provide the uniform control mechanisms to perform a “commit” operation for both
types and an undo” operation for the elementary transactions and a "compensation” operation for

the comoound transactions.

Tohcadd ne nob st o current toancncon subayabom Goos oot preo sy mechaimemy hich

support a "cooperating” transaction.

6.5.1 Transaction Types, Scopes, and Tree

e Transaction Types:
A transaction type indicates whether the current transaction is the elementary or
compound transacticn and the top-level or nat.

e Transaction Scope:
A transaction scope is created when a new transaction construct is used in a process.
Within this scope, a client can access atomic objects as if these computational steps
were executed alone.

e Transaction Tree:
A transaction tree is a structure that can be used to trace the dynamic behavior of a set of
transactions. The transaction tree also provides intormation related to the commit
protocol and lcck propagation among the nested transactions.

e Transaction Id:
The transaction subsystem gets a unique transaction id from the base kernel when a new
transaction is initiated and guaranteed to be unique over the lifetime of the transaction. A
transaction id is a fixed-length descriptor consisting of a sequence of parent’s node id.
current node id, and local unique id.

6.5.2 Transaction Management

The transaction manager is responsible for maintaining the consistency of the atomic arobjects
even in the case of a node failure. The major activity of the transaction manager is the

"BeginTransaction”, "Commit" and "Abort” transaction processing.

To commit a transaction, the transaction manager coordinates with the related page set subsystem
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and pertorms atormic update foe all atonic augects the boncacton has acate L The actual
coardination is performed based on the 3 phase comnut protocol [Bermstemm 82 to improve s

rehiabihty.

To abort a transacticn. the transaction manager must also coordinate with the page set subsystem,
but it performs "undo" for elementary transactions and imtiates the necessary “cormpensation

operations” for ail pre-committed compound transactions.

6.5.2.1 Components of the Transaction Manager

Each Transaction Manager works with a group of workers, called “"Cogcrdinctor”™ and
“Subordinator® A "Cocrdinator" is assigned to keep track the activity ot a top-level transaction.
ehan the top-rovel bansachon s comantted, the "Coordinddor” worker 15 responsible (o perfonm
3-phase commut protocol among the rela;ed subtransactions. A "Suordinator”™ 15 used to koep trick

the activity of a nested transaction.

When a new transaction is created. a transaction descriptor 1s created in the Transaction Manager

and s used to matntain the current status of the transaction and relationship to its child transactions.

6.5.2.2 Arch(QS primitives

The following ArchOS primitives are supported for transaction management for a client.

tid = BeginTransaction(trantype, timeout)

sval = CommitTransaction(tid)
sval = AbortTransaction(tid)
sval = AbortincompleteTransaction(req-tid)

tid = SelfTid()

otid = ParentTid(tid)

trantype = TransactionType(tid)
val = 1sCommitted(tid)

val = IsAborted(tid)

TIME timeout The timeout value indicates the maximum lifetime of this elementary transaction.
TRANTYPE trantype
The type of the given transaction, such as "CT", "ET", "Nested CT", or "Nested
ET".
TID tid The id of the specitic transaction.
TID ptid The parent's tid of the given transaction "tid".
INT sval returns 1 if the requested action was performed on the specified transaction

successfully; otherwise returns error staus code.
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LGOOLEAN val CRUL o the reque sted prodicate s hold: otherwine coturng £

The: Tooesonton prnmtive o tos atransaction descriptor for the reguested ttoncection. The

CommutTransaction primitive commits the specified transaction.

The AbortTransactior primitive aborts the specified transaction and all of its child transactions
within the same transaction tree. If the transaction that invokes the AtortTransaction primitive does
not beiong to same ‘he transaction tree as the transaction which is to b2 aborted, a client cannot
abort that ransaction  This pnimitive executes all of the necessary "undo” or "compensate™ actions.
hriccd an the trans~rction type. and brevcs the current transaction scope. Altic cororichion of th -

actions. the ctatus of all affected atornie objects will be consistent and returncd to wither "id anbical”
to or “a member of the equivalence class” of their initial (pre-execution) states. The
AportincoemplinteTransaction primitive also aborts all of the outstanding incomplete transactions
wich had been initiated by an outstanding RequestSingle or RequestAll primitive. In other words. all
of the nested transactions which belong to the specified request transaction but have not vet

completed (committed) will be aborted.

The SeifTid primitive returns the id of the current transaction and the ParentTid primitive returns the
parent transaction id of the given transaction id. The TransactionType primitive returns the type of
the given transaction (a compound or elementary) and aiso indicates the transaction level. A
isCommitted primitive checks whether the given transaction is already committed or not. A /sAborted

primitive checks whether the given transaction is already aborted or not.

6.5.3 Three-Phase Commit Protocol

When a top-level transaction is created, its node's transaction manager becomes a primary
coordinator to perform the 3-phase commit protocol and the other transaction managers where at
least one nested transaction was executed become subordinators. These subordinator transaction

managers are also used for backup of the primary manager.

The current 3-phase commit protocol [Bernstein 83] can be summarized as follows:

1. The transaction manager, say TM., which is responsible to a top-level transaction, Tton,
invokes "prepare"” operations at all visited node’s transaction managers by using a
RequestAll primitive. Then, it waits for all transaction managers to acknowledge the
“prepare” operation.

2. TMI invokes "precommit” operations on all the other transaction managers which involve
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Tr o Wheen the: other trimsaction managets imtiale the "precomnut™ aperation. they add
iy

a new entry, Ih_,‘, to s copy obf "comnut hist” of l"OD Fhen, they et for yll

acknowtedgemeants for "precommit” to come back.

3. TA perform "commut” operations it all related transaction monagers

6.5.4 Compensation Action Management

A transaction manager must initiate a compensation action whenever a compound transacton is
aborted and must guarantee that the effects of all committed actions are cancelled out. In general.
the craenng relatton among the compensation operations is sensitive to satisly local and Stobal
“equivalence relations”. thus the transaction manager must maintam a clear oraening rule  In e

current atgonthm, we ke the reverae ordoring of e "commutted™” soquene - of o diong

The boox keepmq is performed by using a "compensation log” at each arobject When an arcig ot
invokes a compensatable gperation on angther arobject as a nested transactiun. a4 ‘compensalion
log” record which consists of the current transaction 1d (i.e., caller’'s transaction «J). arovject name.
operation name. parameters, the compensation cperation's name, necessary parameters for the
compensation operation, will be added on the caller's log. When the caller's transaction is abortad.
the system first checks the "cancetllation relation” between the current operation and the previous
operations by getting the information from the arobject and then the system can simoly determine the
necessary compensation operations by looking at the compensation log record from the end to the

beginning and invoke them.

6.5.5 Lock Management
Proper lock management is necessary to provide a consistent view of atamic data object across the

transaction tree. i

When a nested elementary transaction commits, all of the locks that it held are passed to the
transaction in which it is nested (its parent in the transaction tree); when a nested compound
transaction commits, all of its locks are released. The rules that determine which locks a transaction
may obtain are more involved. Two transactions are said to be unrelated if: (1) they are not contained
in a single transaction tree, or (2) they are in a single transaction tree and are concurrently executing
siblings or descendants of concurrently executing siblings. or (3) they are in a single transaction tree
in which one is an ancestor of the other and either the descendant is a compound transaction or
there 1s a compound transaction on the path connecting the two transaction nodes in the
corresponding transaction tree. (Note that according to this definition. a compound chiid transaction

ig always unrelated to its parent transaction.)
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Two unrelated transactions may compete for locks, and they may hold locks with compatible lock
modes for a single data object at any qiven time. However i they request ncompatible lock mades
for a single dala object. then one of the compehitors will obtam alock and the other wall block until ¢t

can receive the dosircbiock, or it il return to the requestor wilh an appropoate status ndication,

Two transactions are said to be rejated it they are contained in a single transaction tree where one
is the descendant of the other. the descendant is an elementary transaction. and there are no
compound transactions in the path connecting their respective nodes in the transaction tree. The
foci compatbibity rules for related transactions are different than those for unrelated transactions. in
this case. the descerdant transaction can obtam any lock mode ftor any lock held by a related
ancestorin the rnsachon tree. mctuding e omapatibie lock medes that would not be cilowc:tf the
transdenons sere unroiated. (Of course (the descandant transaction will have te compete with all of
the unreiated transactions in the system to successfully obtamn the requested lock wiih the desired

mode.)

The fcltowing ArchOS primitives are supported for lock management for a client:

newlock-id = CreatelLock( {parent-lockid])
val = DeleteLock(lockid)

sval = SetlLack(lock-type, lockid, lock-mode)

tval = TestandSetLock(lock-type, lockid, lock-mode)
tval = TestLock(lock-type, lockid, lock-mode)

rval = ReleaselLock(lock-type, lockid, lock-mode)

W

INT sval 1 if the specified lock is set; O if the lock is not set. A negative value wiill be
returned if an error occured. '

INT tval 1 it the specified lock is being held: O if the lock is not being held. A negative
value wil! be returned if an error occured.

INT rval 1 if the specified lock is released:; O if the lock is not released. A negative value
will be returned if an error occured.

LOCK-TYPE lock-type
The lock type can be either "TREE" or "DISCRETE".

LOCK-ID lockid The lockid indicates the unique id of a lock.

LCCK-MQODE lock-mode
The lock mode can be "READ", "WRITE", etc.
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The Soroos pamitive Lets a "tree By o “discrete-type ™ lock on arhiliary ob ot by spectlymg a
lock key and its mada it g requested lock s being neid. the caller will block untid it 15 redeased. The
pesiiodUei Capritive also e 1o set alock, however, it will return a "FALSLE™ f the lock 1s bumy
hetd, 1t the roge Dloce s a e luck type. then the Sel ok and TestandSctl.ock pnmitives may also

fail due ta the violation of the tree-lock convention (See Section 4.2.4.2).

The Tes:Lock primitive checks the avaitability of a specified lock with a lock mode. in the case of a
tree lock. 1t also checks whether the locking would be legal in the corresponding lock tree. The
Rereasel 2o« prumitive can release the lock on an object which was gained by the SetlLcck or

-

cstangSarioc primitive explicitly.

6.5.6 RucHvery Manayement

Since automatic recovery of application nrograims is not an easy task for the transaction subsyStem,
the subsystem guarantees only the consistency of atomic arobjects and provides a handle to
distinguish the pre-crash and post-crash situation. Each arobject designer must define a proper

action tor recovery and let the "INITIAL" process hanile a detailed recover sequence.

In ArchCS. each arobject has an atomic variable, called the "restart-counter” which becomes
incrementec whenever its host machine restarts. By using the restart counter, the INITIAL process

can examine whether the program is running before a crash or not.

To clean up and retrieve the necessary atomic arobjects, the transaction subsystem must
coordinate with the page set manager. In particular, the atomic page set manager can reccver the

nessary page set for a given atomic arobject.

6.6 File Management Subsystem

The ArchCS File Management Subsystem provides a system-wide, location independent file access
service. It provides three types of files: normal, permanent. and atomic. Normal tiles are temporary,
and not recoverable following a crash. Permanent files are saved on disk. and most closely resemble
files on other systems. Atomic files are guaranteed tc be failure atomic under "soft and clean”
failures [Bernstein 83]. All three types of files are client levei arobiects when active (ie open) When

nactive, permanent and atomuc files are saved using page zets (See Section 6.7)

The implementation of files as regular client level arobjects achieves two main sdvantages. First.

the full power of the ArchOS transaction facilities 1s available. permitting the artutrary nesting of
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atenue hle cperaticns withm other neLted transactions, Second. the bl arabpeo ts are treatod e
same manner as other arobjects by the Time driven Scheduter and ihe Tune drven Victuad Moemaory
Manager  This cnsures that criical Biles (data) il be avaddabie (soheduted and poged i) when thy

arc oL deeos ot by cnticad procccns oo thusredoomegg the nunbeer shoy o8 0 ey

The Fie Subsystem uses logical, location independent names for files. Hence, files are rot
constrained to reside on particular disk volumes. They can be dynamically moved to other disks by
the system f dosired. for improved global disk usage. The hle name space s flit (not herarchical),
but faciines are proviced to allow many of the benefits of herarchical directonss. File names are
o ore relztively fong strings composed of several shorter stiings (Clal-d o onen)

dratest e, theespe il character 7 alach)y  Anoiabal substaing of A nmie e far i i s s ne e
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Node 1 Node 2
P~efix Map Manager | Prefix Map Manager 2
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gn ‘usr/bn Jsrjohn

Figure 6-14: The Partitioned File Subsystem Directory Structure

The system-wide file system directory is partitoned. where each partitton s saved in a known
‘acation (refer Figure 6-14). For example, the part of the directory contaiming all file names with a

particular prefix 1s saved at one logical disk. This style of implementation was ictated by efticiency
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conaderabons, such as m creatng and locdating hles. Facihiies are provitod o moang paits of the

directory from one itk to another, but this 1s expected to occur infrequently
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Figure 6-15: Subsystems within the File Management Subsystem

The functionality of the File Management Subsystem is provided by four separate but co-operating
entities (retfesr Figure 6-15).

1. Each client arobject is linked with a standard file system interface. This interface consists
of a library of routines, which hide the implementation details of the other subsystems
w~ithin he File Management Subsystem.

2. Eacn open (active) file is represented by an instance of a user level file type arobject.

3. Each node in the system contains a kernel level Prefix Map Management Arobject, which
1S responsibie for mapping file name prefixes to the logical disks on which their directory
entries reside.

4 Each logical disk in the system containing a portion of the directory has an associated
kerne! level Directory Management Arobject.

The above four entities will be described in some detail in the following sections.
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6.6.1 Clicnt Aroboctl’s Hide System Inlerface

A chient aroby et wall always interact with the file.syslom through the use of a standard <ot of library
routmes. These routines are together referred to as the Client Arobject’s File System Interface (or the
CA Intetface). The pnnuy purpose ol the CA Interface is to transparently interaci with the thyce
other subsystems of the file system (File Arobjects. Prefix Map Manager, and Directory Manager) in
supporting client level functionality. Thus. it hides the details of the interactions with the other parts

of the File Subsystem. and provides a cleaner interface than the raw system primitives.

A cecond aspect of the CA Interface’s functionality 1s that it provides appropriite internal buffering

to improve efficiency. For open files, it alsc keeps track of the sizes of the liles.

The foliowing list of primitives is intended to dlustrat2 the functionahty of the ArchiOS <tandard file
1/Q Hbrary 1t is not an exhaustive list. Many other primitives can be added to make hile management

more convenient for the client.

fid = CreateFile(filename, filetype. mode [, node]) .
val = DeleteFile(filename)

tid = OpenFile(filename, mode)

val = CloseFile(fid)

7al = RenameFile{oldname, newname)

val = SyncDirectory(filename)

val = SetPrefix(prefix)

prefix = GetPretix()

nread = ReadFile(fid, buffer, length)

nwritten = WriteFile(fid, buffer, length)

nwnitten = ZeroFile(fid, length)

val = SeekFile(fid, byteoffset, origin) -

val = SyncFile(fid)

val = StatusFile(fid, statusbuffer)

val = InfoFile(tilename, infobuffer)
INT fid The ID for the file.

BOOLEAN val TRUE it the specified operation is done successfully; otherwise FALSE.

FILENAME prefix  The filename prefix currently in use, which will be added to any filename tails
being specified.

INT nread The number of bytes actually read.
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INT nwntten The number of bytes actually written.

FILENAME filename
The name of the file for which the specified operation is to be performed.

FILETYPE filetype The type of the file to be created: NORMAL, PERMANENT, cr ATCMIC.

MODE mode One of four possible modes in which the file can be opened: READ, WRITE.
READ-ONLY, and EXCLUSIVE-WRITE.

NODENAME ncde The ID of the preferred ncde on which the file should be created.

FILENAME oldname, newname
The old and new names (respectively) of the file being renamed

BUFFER *buffer  The address for the data buffer.
INT length The number of bytes to be read or written.
INT bytecffset The position in number of bytes from the origin.

FILEORIGIN origin Starting pasition in the file, which can have one of three values: START-OF-FII_E.
END-OF-FILE, and CURRENT-PCSITION.

FSTATUSBUFFER *statusbuffer
The buffer address for returning dynamic file status information.

FINFOBUFFER *infobuffer
The butfer address for returning static file information.

The Createfile primitive creates a file of the specified type (NORMAL, PERMANENT. or ATOMIC) on
the preferred computing node. If a node preference is not specified, the file is created on any node.
The newly created file is then opened in the specified mode. The DeleteFile primitive deletes the
specified file. OpenFile opens the specified file in one of four modes: READ, WRITE, READ-ONLY,
and EXCLUSIVE -WRITE. The CloseFile primitive closes the specified filte.® RenameFile changes the
name of the file from the old name to the new name specified. The SyncDirectory primitive is used for

saving any buffered directory information for the specified file on disk.

The SetPrefix pnmitive provides a short hand technique for giving filenames. A file orefix can be

29Al| cpen tiles for a chent are registered with the kernel by the CA Intertace. Hence, # an arobject with open files s
QJestroyed he kernel can close all these open files. The occurrence of each of the three primitives Createfile, OpenFile, and
CloseFiie, '8 reported to the kernel. :
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specthied, which s automabtically concatenated with hlename Gals to form e conngdeios bl nagie The

GetPreire primitive allows the client to obtaun the current value of the tile prefix.

The ReadFie prinvtive is used for reading the spectfiad number of bytes from a hle, stiuting at the
current position. The bytes read are returned in a buffer in the client’s address space. Similarly, the
WriteFiie primitive writes the specified number of bytes from the buffer. at the current position in the
file. The ZeroFile primitive is used for writing the specified number of zero bytes, starting at the
current position in the file. The ability to zero a file is useful when truncating files. and creating sparse
files. The SeekFile primitive allows random access to a particular position in the file. The position can
be specified as a byte offset from the start or end of the file. or [rom the current position in the iile.

The SyncFite primitive flushes the contents of a file from buffers in memory onto disk

The StatusFile primitive i1s used for obtaining dynamic status information of a fil2 in the butfer
provided. Information such as the current mcde of file access, and the number of active and
outstanding open requests on the file is provided. The InfoFile primitive. on the other hand, provides

static file information, such as creation date, last madification date, length of file, etc.

6.6.2 File Arobjects

Each open filz in the system is representgd by a client level file arobject. There are three different
types of file arobjects, corresponding to the three different types of files: normal, permanent, and
atomic. A file arobject maintains the "file buffer”, and provides byte level file /0. The file is mapped
onto the virtual address space of the file arobject, and the buffer is maintained automatically by the
Virtual Memory Subsystem. The two main functions of a file arobject are: (1) maintaining locks, and
thus ensuring consistent concurrent access to the file, and (2) handling read and write operations on
the file. Locks are set on the entire file. When the file is opened, the type of access is specified, and
the appropriate lock is set. The lock is released only when the file is closed. In addition to lock
management, reading and writing, a few other primitives such as FASync and FAStatus are also
provided.




172

filesize = FAOpen(mode)
val = FAClosel)

nbr = FARead(location, nbytes. bulfer)
nbw = FAWrite(location, nbytes, buffer)
nbw = FAZero(location, nbytes)

val = FASync()
val = FAStatus(statusbuffer)
val = FARestart(fdm-aid, filesize)
INT tilesize The size of the file in bytes.
BCOLEAN val TRUE if the specified operation is done suc¢cessfully: otherwise FALSE.
INT nor The actual number of bytes read.
INT nbw The actual number of bytes written.
MODE mode One of four possible modes in which the file can be opened: READ, WRITE,
READ-ONLY, and EXCLUSIVE-WRITE.
INT location The location (in bytes from the beginning of the file) within the file at which
reading or writing starts.
INT nbytes The number of bytes to be read or written.

BUFFER *buffer  The address for the data buffer.

FASTATUSBUFFER *statusbuffer )
The buffer address for returning status information.

AID fdm-aid The ID of the Directory Management arobject, to be used when closing the file.

The FAOpen primitive allows a file to be opened in one of four possible modes: "READ", "WRITE",
"READ-ONLY", and "EXCLUSIVE-WRITE". These modes apply to all three types of files, but the
behavior of a mode does depend on the type of file. Once the file is opened in a particular mode, the
appropriate type of lock is set on it to ensure consistency. The size of the file is returned to the client
arobject. The file size, as well as the current position pointer are maintained by the Client Arobject
Interface. The FAClose primitive closes the file. It also deactivates the file arobject if there are no

other outstanding "opens" on the file.
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The t AiHead and A Wee operations altow mulhole bytes to be read or vwnitten at g tioe. The careent
position at which reading or writing should start, and the number of bytes to be read or written are
provided. along with & pomnter to the data buffer=’. The actual number of bytes read or wrnitten s
returne! by the operation. lhe FAJcro prinutive allows a number of bytes inside of the hle to be

zeroed out. Thus. it 1s possibie to truncate a file, or maintain a sparse file in this system.

The FASync operation flushes the corlents of the file buffer onto the disk. so that any buffered
information is synchronized with the copy ot the file stored on disk. The FAStatus primitive returns
dynamic file information in the statusbuffer provided. Information is providad about the mode of iile

access. the lock compatibiiity of open files, and the number of active and outstanding open requests.

The ~AFeztart operation is usad for initialization purposes when the file arobject is first creatad
(which can happen when the file is created, or first opened). It is invoked by an instance of the
Directory Management arobject, which provides its own 1D and the current size of the file as
parameters. The ID of the Directory Management arobject is used by the file arobject when the fiie is

closed by any client.

6.6.2.1 Components of a File Arobject

The components of a File Arobject are described below and shown in Figure 6-16. Each file
arobject has a single process called the FA Manager Process, which receives all requests for
operations, carries out the appropriate operations, and returns the results. It operates on three main
data structures: (1) the Open Client List (OCL), (2) the Request Client List (RCL), and (3) the file
tuffer. The Open Client List maintains a list of the clients which have successfuily opened this file,
and the mode of access for each client. Since locking is done on a per file basis, all these clients
must have compatible locking on the file. The Request Client List is a list of the clients watiting for
their open operations to be completed. The information maintained for each request is a triple
consisting of the request transaction 1D, the ID of the requesting client arobject, and the mode of

access requested.

The file buffer is a part of the file arobject’s address space. It is maintained in a number of fairly

ka’). A list of pointers to these chunks and a count of the number of

large chunks {32 KBytes per chun
cnunks are also maintained. The advantage of large chunks is that a long list of chunk pointers is not

needed, and hence searching for a particular page in the file can be more efficient.

30" the client is remote with respect to the file arobject, the communication mechanism automaticatly handles data transter
to the remote buffer.

3 The size of the chunks is determined by the architecture of the SUN workstations, the current target machines for ArchOS
implementation.
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Figure 6-16: Components of a File Arobject

In addition to the three main data structures, a few other pieces of information are also maintained.
Some of these are the ID for the Directory Management arobject, a flag which indicates whether the

file has been modified, and a variable which saves the current size of the file32.

6.6.2.2 Normal and Permanent File Manipulations

Opening of files is allowed to proceed on a FCFS basisss, but multiple compatibie opens are
permitted. When a FAOpen request is received by the FA Manager process, the Open Client List is
first checked to see whether there are other o.ngoing requests. If the OCL is empty, the incoming
request is placed on that list. !f the Request Client List has some waiting clients, then the new request

32'r'he size of the file saved here is updated whenever FAWrite and FAZero operations are invoked. This 1s not the most
up-to-date value, since the Client Arobject Interface buffers several read and write operations.

33The policy for opening files can possibly be set by the user to better suit the constraints of the real time application.
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15 addced to that hiot. i the RCL is empty. and the mode of the mcommg roquests compatizle vath thee
modes cf the ongoing requests in the OCL. the new request 1s added to the OCL. but it the mode 15
mcompatible. then it 1< added to the RCL. Once the incoming request has been added 10 the GCL.
the Faueen 15 complete, and the clients signalled. If the inconming request 1s added to the RCL. the

FAQpen s suspended. pending lock availability.

When the FACIose operation is requested, the OCL is first checked for the requesting client, and the
corresponding entry is removed. Next, the FDClose() operation is invoked for the appropriate
Directory Management (FDM) arobject. The FDM arobject maintains a count of outstanding open
requests. and informs the File Arobject whether it should continue. deactivate. or «ill itself. If the FA
has to continue, it moves all of the compatible entries from the head of the RCL to the OCL, and
notifies the carresponding chients. tf there are no outstanding open requests. the FA deactivates

itself. if the file has been deleted. and the last FAC!ose operation has comgleted, the FA kills itself.

The reading and writing of normal and permanent files is very straightforward. The system "copy”
mechanism carries out the transfer of data between the FA address space and the client's address
space. Reading and writing to disk is automatically handled by the virtual memory manager. Each
time the FAWrite and FAZero operations are invoked, the file arobject updates its notion of the current

file size.

6.6.2.3 Atomic File Manipulations

The aperations on atomic files are quite similar to their counterparts for normal and permanent files.
The main difference is that atomicity of the operations has to be guaranteed whenever the file is
manipulate The FAOpen and FAC/ose operations are the same as described in the previous
section, since these operations only affect the OCL and RCL data structures, and do not touch the

atomic file data.

The FARead and FAWrite operations are implemented.as elementary wransactions. so that they can
be arbitrarily nested inside of other transactions. The FAAead operation invokes the Copy
mechanism for copying the data from the file arobject’'s address space to the client’s address space.
For the FAWrite operation however, the AtomicCopy operation is invoked, which updates the file in
the main memory, and also propagates the write operation to the Atomic Page Set Subsystem (refer
Section 6.7.2).
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6.6.3 Prefix Map Management

The directory of the ArchOS File Subsystem is distributed across multiple nodas and multiple cheics
of the system. Specihcally, all directory entries with a particular prefix are on a particular logical disk.
Hence. we need to maintain a system wide table which can map the diectory fragments
corresgending to different prefixes. to the logical disks on which these fragments reside. The main
function of the File Prefix Map Management Subsystem (or FPMM subsystem) is o maintain this
mapping in a table known as the Prefix Map Table (or PMT). There is one instance of the FPMM
subsystem at the kernel level of each node of the distributed system. A copy of the entire system vide

Prefix Map Table 1s maintained by each FPMM instance.

All of the functionality provided by the FPMM subsystem is relaied to magping file name prafixes to
iDs of appropnate Directory Management Arobjects, which save the directory entries for those
prefixes. Cnce the appropriate Directory Mangement Arobject for a file has been determined. ali
future operations on that file are performed either by the File Arosect, or by the Directory Mangeiment
Arobject (depending on the operation in question). The FPMM subsystem, on the other hand,
provides operaticns for accessing and maintaintng the Prefix Map Table, e.g. at restart, and when disk
volumes are mounted and unmounted. The ability to create and delete new directory fragments by

adding or removing file prefixes is also provided.

tdm-aid = FPMap(filename)

val = FPRestart()

val = FPMount(diskid)

val = FPUnmount(diskid)

val = FPAssign(prefix, diskid)
val = FPUnassign(prefix)

val = FPInsertTable(prefix, diskid, fdm-aid) -

val = FPRemcveTable(prefix)
val = FPRequestTable(tablebuffer)
L3

AlD fdm-aid The arobject ID of the Directory Management subsystem.
BOOLEAN val TRUE if the specified operation is done successfully, otherwise FALSE.

FILENAME filename
The name of the file for which the specified operation is to be performed.

DISKID diskid The Logical Disk ID of the disk volume being operated on.
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FILENAME prefix  The fitename prefix being used n the specified operation

TABLEBUFFER *tablebuffer
The buffer used for returning the contents of the Prefix Map Table,

The FPMap primitive returns the arobject ID of the Directory Mangement Subsystem instance which
manages the directory fragment for the given file. This primitive will usually be invoked by the Client
Arobject Interface, when the first operation (e.g. CreateFile or OpenFile) 1s requested by a client.
Cnce the appropriate Directory Management Arobject for a specific tile has been determined. any

further requests relatd to that file will not be addressed to the FPMM Subsystem.

The main purpose of the FPRestart primitive is to reconstruct the Prefix Map Table. This is done by
determining which disks are mounted ;)n this node, and by acquiring information from the PMTs
residing at other nodes in the system. The FPMount primitive is used when a disk vclume is mounted.
If the new disk has a portion of the directory on it, the Prefix Map Table is madified to reflect this, and
an FDM arobject is created to manage that directory. The FPUnmount primitive is used when a disk
volume 1s removed. Any entries corresponding to this disk in the Prefix Map Table are removed, and

the FDM arobject is informed.

The £PAssign and FPUnassign primitives are used for adding and removing prefixes to and from the
entire file system directory. A new prefix can be added to the specified disk irrespective of whether
the disk already has a part of the directory on it or not. When a new prefix is added, modifications are
made to the Prefix Map Table and to the disk itself. An FDM arobject for the disk also has to be
created. if it does not already exist. The FPUnassign primitive removes a prefix from a disk by making
modifications to the PMT and to the disk. It also informs the FDM arobject if necessary. This primitive
will execute only if the prefix being unassigned does not carrespond to any existing files; otherwise an

error indication is returned.

Three primitives are provided for obtaining and modifying information from the Prefix Map Table.
These primitives will be invoked primarily by FPMM arobjects on other nodes of the system. The
FPInsertTable primitive inserts a new entry into the PMT, which consists of the directory prefix being
added, the ID of the logical disk on which the directory portion exists, and the |D of the FDM arobject
responsible for the management of that directory portion. The FPRemoveTable primitive removes the
specified prefix entry from the PMT. The FPRequestTable primitive asks for all the contents of the
PMT to be returned in the buffer provided.
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6.6.3.1 Components ol the Prefix Map Management Subsystem

The FPMM subsystem consists of three compdnents: (1) the Prefix Map Table or the PMT, (2) the
Pretix Map Manager process, and (3) the Prefix Map Worker process (refer Figure 6-17). The PMT
xeeps a copy of the entire system wide mapping between prefixes and directory locations. lts entries
are a series of triples consisting of the file name prefix. the ID of the logical disk containing the
directory fragment corresponding to this prefix, and the ID of the FDM arobject which manages this

directory fragment. It is important to ensure the consistency of the multiple copies of the PMT.
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Figure 6-17: Components of the Prefix Map Management Subsystem

The Prefix Map Manager process is responsible for providing most of the functionality of the FPMM
subsystem. It accepts all requests for FPMM operation;s, and returns the results. The only purpose of
the Prefix Map Worker process is to wait on behaif of the Manager process when peer level primiiives
are invoked by the Manager process. These primitives (FPInsertTable, FPRemoveTable,
FPRequestTable) are used for maintaining system wide consistency between the PMT instances. In
the absence of the Worker process, deadlocks can arise if multiple peer operations are in progress

concurrently.
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6.6.3.2 Directory Mounting and Reassignment

in arder to understand the implementation of the primitives fFPMount, FRPUnmount, FPAssign. and
£Rnassign s important to have some information 1bout the layout ot the togical disik volumes.
Thare s a special payge (Page 0) on each disk volume which contains information about the contents
and location ot several important data structures stored on the disk. Hence, by examining Page 0, it1s
possible to determine whether there are any directory fragments on the disk, and if so, what file

prefixes they correspond to.

voaen aiogical disk is mounted on a node. the FRPAMount primitive 1s invoked on that node to ugdate
the PMT if necessary. First, Page O of the disk is checked to see whether the disk has a directory
fragment cnit. and if so. to determine the prefixes which are mapped on it. All these prefixes are then
entered in the local copy of the PMT, aiong with the ID of the logical disk. An FDM darobject is created
and initialized to manage the newly mounted disk directory, and its arobject 1D is entered in the PMT.
This completes the updating of the local PMT. All newly added entries are now sent to all other

instances of FPMM by invoking the FPRInsertTable primitive on peer FPMM arobjects.

When a disk is unmounted, the FPUnmount primitive is invoked. If there are any entries in the PMT
which correspond to this iogical disk, these entries are removed. The FDM arcbject for that disk is
cleaned up and destroyed by invoking the FOUnmount primitive. Furthermore, peer FPMM arobjects

are informed by invoking the FPRemoveTable primitive.

The FPAssign primitive assigns a new prefix to a particular togical disk. First Page 0 of the disk is
checked to see whether it already has a directory on it or not. If there is no directory, a directory root
page set is created on that disk, and a pointer to its root page is entered in Page 0, along with the new
prefix being added. An FDM arobject also has to be created to manage the directory on this disk. An
entry is added to the PMT corresponding to the new prefix, logical disk, and FDM arobiject The
addition of a new prefix to a disk which already has a directory fragment on it is much simpler. It only
requires a new entry on Page 0 of the disk and in the PMT, since the directory root page set and FDM
arobject are already present. In both cases, once the PMT has been updated, the peer FPMMs are

informed of the new entry.

The FPUnassign primitive removes a directory segment (corresponding to a prefix) from a disk.
However, this operation is only allowed when there are no files in the system which correspond to that
prefix. First, the prefix is removed from Page 0 of the disk. If, as a result of this removal, there are no
more prefixes left on the disk, the directory root page set also has to be freed. If the disk has no

directory segment left on it, the FDM arobject for the disk is destroyed by invoking FDUnmount. In
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any event, the entry for the prefix 1s removed from the PMT, and the peer FPMMs are informed of the

removal.

6.6.3.3 Restart

The main purpose of the FPRestart primitive is to recreate the Prefix Map Table. To do this, the
Manager process first invokes the Worker process to obtain the PMT (with FPRequestTable) from one
of the other nodes in the system. in the meantime, the Manager itself checks the Mount Table of its
node (see Section 6.7 1) to determine ail the logical disks on the node. For each mounted disk, it
essentially executes the functionatity of the FRPAMount primitive. It checks Page O ‘or prefixes. enters
these in the PMT, and creates an FDM arobject for each disk with a directory fragment. Once all

entries are mace to the PMT, all peer FPMMSs are informed of the new entries.

There was a danger of deadlocks in the restart sequence, esnpecially if multiple nodes happened to
come up at the same time. To avoid deadlock, a separate Worker process 15 provided. which waits on
the peers FPMMs. in addition, a timeout 1s associated with the FPRequestTable primitive to avoid
.ndefinite blocking. If several nodes come up at the same time, each node can incorpaorate entries in

its PMT pertaining to its own logical disks, and then send this information to the other nodes.

6.6.4 Directory Management

The main purpose of the Directory Management Subsystem is to maintain a part of the file directory,
and thereby map filenames occurring in this directory fragment to their corresponding global paye set
identifiers. This mapping determines the logical cic< on which the file resides, and the iD of the page
set arobject which manages the roat page set for the file. In addition to the mapping information, the
directory also maintains static file information, such as creation date, modification date, and file
length. An instance of the File Directory Management Subsystem (FDM Subsystem) exists for each

disk with a directory fragment on it.

Operations which require directory imapping information, such as F0Open, FCClese, FDCreate, und
FDODelete. are all supported by the FDM subsystem. Filename matching operations, such as finding all
files with a matching prefix, are also directory oriented operations, and are performed by this
subsystem. [n addition to these operations, primitives are provided for accessing and moedifying the

directory entries.
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fa-aid = FDOpen(filename)
fa-aid = FDCreate(filename. type {, nodel})
action = FDClose(modified, filesize)

]

val = FDDelete(filename)
val = FDUndeleteAtomic(filename)
val = FDExpungeAtomic(filename)
val = FDSync([filename})

last = FDFind(prefix, after. comp, buffer, bufsize)

val = FDInsert(tilename, file-into)
val = FDGet(filename, file-info)
val = FDRemove(filename)
val = FDRestart(diskid)
val = FDUnmount()
AlD fa-aid The ID of the File Arobject, corresponding to the file being opened or created.

FDACTION action Specifies one of three possible actions to be taken: CONTINUE, DEACTIVATE, or

KILL.
BCOLEAN val TRUE if the specified operation is done successfully, otherwise FALSE.
FILENAME last A number of components or tails (depending on the value of comp) of filenames

are found, matching the given prefix. The last component or tail is returned in the
fast variable. |f the end of the list of components or tails has been reached, a
special value (NULL) is returned.

FILENAME filename
The name of the file for which the specified operation is to be performed.

FILETYPE type The type of file to be created: NORMAL, PERMANENT, or ATOMIC.
NCDENAME node The ID of the preferred node on which the file should be created.

BOCLEAN maodified
Flag which specifies whether the file has been modified or not.

INT filesize The size of the file in bytes.

FILENAME prefix The filename prefix which has to be matched, and corresponding to which all
filename components or tails of filenames have to be returned.

FILENAME after The value returned by the variable /ast is used here. Hence it is cither Q
component or tail of a filename. Matching of components or tails has to start after
this element. if the value of after is NULL, matching starts from the first clement.
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BCCLEAN comu  If the value 15 TRUE. only the next components of the filenames foillowing the
matching prefix are returned. If the value 1s FALSE, the entire tails of filenames
are returned.

BUFFER *bufter The acdress for the data buffer.
INT bufsize The size of the buffer being provided.
FILEINFO fila-info  Rewrns alf the information about a file saved in the directory entry.

DISKID diskid The Logicai Disk D of the disk volume being operated on.

The FOCcen p-imitive opens an existing file. If this is the first FOOpen operation on the file, the
Arobject, Process Management Subsystem is called upon to activate the inactive file arobject. and
return the ‘0 or the active file arobject. If the file has already been opened. the count of opens is
incremented. and the ID of the active file arobject is returned. If the file does not exist, an error is
returned The FDCreate primitive creates a file of the specified type (NORMAL, PERMANENT. or
ATCMIC) on the preferred computing node, if possible. The Arobject/Process Management
Subsystem is requested to create a file arobject of the appropriate type, and the ID of this arobject is
returned. A directory 2ntry for the newly created file is added. Following creation, the file is opened.

If the file aiready exists, an error is returned.

The FCClcse primitive is always invoked by the file arobject, when some client has requested the
FAClIcse operation. It responds by specifying one of three operations (CCNTINUE, CEACTIVATE, or
KILL) to be carried out by the file arobject. It also modifies the static fiie information saved in the
directory. !f the file has been modified, the modification date and time is changed to the present time,

and the file length is updated. .

The actions taken by the FDDelete primitive depend on whether the fila is open or not at the time of
the request. If the file arobject is inactive, FDDelete deletes the file and removes its directory entry. If
the file is open at the time the FDDelete request is received, a clean file deletion is provided. Further
FDOpen operations are not allowed, and once the file has been closed by all current users, it 1s
deleted. In the case of atomic files, the FDDelete primitive merely flags the file {in the directory) as

deleted, so that it can be recovered in case the transaction is aborted.

The FDUndeleteAtomic and FDExpungeAtomic primitives are provided to allow atomic deletion of

files. The FDDelete primitive for an atomic file sets a flag in the directary entry. After the transaction
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commts, the garbage collector can invoke the FDExpungeAtomic prunmve,34 which removes the
directory entry, and expunges the file. lf, on the other hand, the transaction has to be aborted. the

FDDelete can be undone by the FOUndeleteAtomic pnmitive, since the file has not been expunged.

The FDSync operation ensures that any buffered directory information pertaining to the specified
file is synchronized with the version saved on disk. If a file name is not specified, the contents of the

entire directory buffer are synchronized.

The purpose of the FOFind primitive is to allow some of the convenience of hierarchical directories.
In a file system with a hierarchical directory, it is usually possible to search for all files and
subdirectories which exist in a particular directory. The FDFind primitive implements the same notion
tn our "Hat" file name space. Given a file prefix {parallel to the full pathname of a directory) it can find
all the compenents (filenames or subdirectory names contained in the directory). It s also possibie to
find the full tails of all matching file names (parallel to doing a recursive directory search). The
booiean variable comp determines which type of search is undertaken: for matching components or
tails. Since the buffer for returning the matching elements may not be able to hold the entire list of .
matches found, the last matching element is returned as the result of the FDFind primitive. The

search can begin after this element when the next FDFind operation is invoked.

Three orimitives are provided for manipulating the directory entries. The FDInsert primitive allows a
new entry to be inserted in the directory. The FOGet primitive allows the directory entry for a
particular file to be read, and the FORemove primitive removes the entry for a particular file. These
primitives can be used by the Client Arobject Iinterface to provide several useful functions to the
client. For example, the RenameFile primitive is implemented by first abtaining file information using
FDGet. then removing the old directory entry with FORemove, and finally adding a new directory entry

with FOinsert to correspond to the new tile name.

The FDRestart primitive is primarily an initialization operation, invoked wihen the FD arobject is
created. A cleanup operation on the logical disk associated with this FD arobject instance is initiated.
The directory is checked for ail normal files, and the Page Set Subsystem is asked to free all page sets
corresponding to these files. Their directory entries are also removed. The FDUnmount operation is
invoked when the logical disk associated with this FDM instance has to be unmounted cleanly. Once
an FDUnmount has been received, FDM does not accept any new operations except FDClose. When
all currently open files have been closed, it sends a reply to the requestor of FDUnmount, and
destroys itself.

3‘The FDExnunqgeAtomic operation can alternatively be nvoked by the transaction manager. or »ven the client.
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6.6.4.1 Components of the Directory Management Subsystem

The FDM Subsystem consists of three main components: (1) the Directory Manager process, (2) the
buftfer for the directory B-tree, and (3) the Open Files Table. In addition to these components, a few
other items of information are also maintained. such as the logical disk ID, and some flags. The three

components are shown in Figure 6-18, and described briefly in this section.

The Directory Manager process is responsible for providing all of the functionality of the FDM
subsystem. It accepts all requests for FDM operations, and returns the results. It manages all the
FDM data structures as weli. in order to maintain the directory buffer, it invokes operations on the

Page Set Subsystem.
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Figure 6-18: Components of the Directory Management Subsystem

The file system directory uses a B-tree structure, and is saved on disk as a nur ter b .

sets (refer Section 6.6.4.2 for details). Some of the pages of the directcry 1.2 .
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emory by the FDM subsystem, in a data structure kn:  n as the Directory Buffer. The FDM Manager
rocess interacts with the Page Set Subsystem in obtaining directory pages from disk, and in writing

ack any dirty buffered pages.

The Open Files Table keeps track of the files which are open. It maintains the names of these liles,

1eir arobject IDs, and the number of outstanding opens on each file. In addition, it maintains some
" ags, such as for open files which are deleted (or expunged). Whenever an FOOpen request is
raceived, the OFT is first checked to see whether the file has already been opened or not. When a file
i3 opened for the first time, an entry is macde in the OFT, but for subsequent opens, the count of
cutstanding opens is incremented. For each FOClose operation, the count of outstanding opens for
that file is decremented. It the count becomes zero, the entry is removed from the OFT, and the file
arobject is told to deactivate itself. If an FDDelete operation is received on an open file, a DELETE
flag is set in the OFT. Further FDOpen operations are not allowed, but FDClose operations are
accepted, to achieve a clean deletion. Once a DELETE flag has been set, the file arobject is told to

kil itself at the time of the last close operation.33

6.6.4.2 The Directory B-Tree

The file system directory maps file names to global page set IDs. It also saves some static
information for each file: the date and time of creation and last modification, the file lype, the file
length, and some flags (e.g. the DELETED flag, to mark files which have been Beleted but not
expunged). ogically, the file system directory fragment on a particular disk is an independent B-tree.
The entries in this B-tree are ordered by the filename (in alphabetical order). Each node of the
directory B-tree is impiemented as a page set. Thus, the directory is implemented as a set of page
sets, which are maintained on disk by the Page Set Subsystem.

The structure of a node in the &irectory B-tree is somewhat complex (refer Figure 6-19), Each node
of the directory B-tree contains a large numbser of entries (200 to 250). Loyicaliy, each direciory entry
is a triple consisting of the filename, the global page set |1D, and a pointer to the file information block.
The actual implementation is complicated by the fact that file names have variable sizes. Hence,
instead of keeping the file name as the first element of the triple, a pointer to the file name is kept.

This file name pointer is a byte offset from the start of the area for saving the full file names.

Each node of the directory B-tree is a page set. The [irst page of this page set is the header page,

35" an atomic file is deleted in this way, its file arobject is deactivated, and not killed. A flag is set in the cirectory entry for
the file, .ndicating that it has been aeleted, and further operations on that hle, other than FDUndeleteAtomic or
FDExpungeAtomic, are not allowed.
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hoids a byte offset from the start of the fourth page.®®

which contains a series of triples. The first element of the triple is a pointer to the fuil file name, the
second is the global page set identifier, and the third is a pointer to the information block (fixed size)
for this file. If the node is internal (not a leaf node in the tree), the page set ID points to the node of the
B-tree to be searched next. However, if the node is external (a leaf node), the page set ID refers to the
location of the file- (1D of the root page set for the file). The second and third pages of the node page
set are reserved for the file information blocks. These pages will be unused in the case of internal

nodes. The full file names are stored starting at the fourth page. Hence, the pointer to the file name

For etficiency reasons, the file name pointer may actually consist of two parts: a prefix pointer. and a last component
pointer. Since file names are typically long, and many of the file names for a given directory node ditter onty in the values of
their last components, this scheme of storing names should signiticantly reduce directory storage requirements
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6.6.4.3 FDM File Manipulation Operations

In this section, we will briefly discuss the key interactions of the of FOM file manipulation operations:
FDOpen, FDClose, FDCreate, FDDelete, FDUndeleteAtomic, and FDExpungeAtomic. Each of these
operations (except FDClose) is invoked by some Client Arobject Interface, and the result is returned

there.

When the operation FDbpen is requested, the Open Files Table is first checked to see whether the
file has already been opened. If this is indeed the case, the arobject ID for the file can be determined
from the QFT. Mo further action is required, exqut the updating of the count of opens for the file.
However, if this is the first open request, the inactive file arobject has to be activated. First the
directory B-tree is searched (by bringing appropriate directory pages into the Directory Buffer) to find
the global page set ID (GPSID) for the (root page set of) file in question. Then the Arobject/Process
Management Subsystem is called to activate the arabject for the given page set, and return the file
arobject ID. An entry for this file arobject is now made in the OFT. Also, the newly created file.
arobject is initialized by invoking the FARestart primitive. This completes the FDOpen sequence, and
the new file arobject ID is returned to the FDM subsystem.

The FDCreate sequence is similar in flavor to the FOOpen sequence. First the directory B-tree is
checked to he sure that the file does not already exist. Next, the Arobject/Process Management
Subsystem is invoked to create a new file arobject of the specified type. The A/PM also decides
where the new file is to be placed®. The GPSID and the arobject ID for the newly created file arobject
are returned by A/PM. An entry for the file is created in the directory, and in the OFT. Finally, the
new file arobject is "restarted” (with FARestart), and its ID is returned to the FDM subsystem,

The FDClose primitive is always invoked by the file arobject, when a client has requested an
FACluse operation. The FDM subsystem responds to this operation by specifying one of three actions
for the file arobject: CONTINUE, DEACTIVATE, or KILL. When FDClose is requested, first the count
of outstanding open requests in the OFT is decremented. If some outstanding opens still remain, the
CCNTINUE command is given to the file arobject. If however, there are no outstanding opens, the
entry for this file in the OFT is deleted. If the file has been modified (modified is TRUE), the
information blocks for the file are updated. Finally, the file arobject is asked to deactivate itseif. The
last FODClose operation on a file is somewhat different if the file has already been flagged for deletion
by some other ¢lient. The directory entry for the file is removed, and the file arobject is asked to kil

itself (which automatically removes the associated page sets).

377he file placement algorithm is subsumed by the arabject and process placement algonthms, and 15 unplemented by the
Arobject/Process Management Subsystem. if a preterence for placement is specilied, this s taken inlo account in making the
tinal decision
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The implementation of the FDDelete primitive is quite straightforward. !f the file arobject is inactive
when the primitive is invoked, the Arobject/Process Management Subsystem is called to destroy the
inactive file arobject (which removes the relevan't page sets), and the directory entry for the file is
removed. If the file is active at the time FDDelete is called, the delete flag is set for the file in the OFT.
At the time of the last FDClose operation, the file is deleted by destroying the active file arobject.

The handling of the primitives (described above) for atomic files may be somewhat different.
Creating, deleting, opening, and closing files atomically is a part of the bigger and more general
praoblem of creating, deleting, activating, and deactivating arobjects atomically. Hence, these issues
have to be addressed in a unified manner. At present, some hooks have been provided, which help in
treating these primitives (especially FDDelete) as compound transactions with compensation actions.
Thus, when an atomic file is to be deleted, the directory is merely flagged as deleted, but the arobject
is not destroyed. Once the highest Iével transaction has committed, the garbage collector can
expunge all "deleted” files, by calling FDExpungeAtomic. |f the transaction has to abort, the deieted
file can be reclaimed by calling FOUndeleteAtomic.

6.6.5 File Management Scenarios

In this section, we will show how the four subsystems within the File Subsystem interact with one
another, and with other subsystems in the kernel, to provide the specified functionality. We will
examine the operations most frequently encountered in the lifetime of a file, and thereby explain the
interactions within the File Subsystem.

The CreateFile primitive is invoked by the client when a new file has to be created. In response to
this request, the Client Arobject Interface has to first determine the ID of the Directory Management
arobject which will manage the directory fragment corresponding to the new file. The Client Arobject
Interface first invokes the FPMap primitive (refer Figure 6-20). The FPMap operation is accepted by
the FPMM Manager process, which checks the prefix of the filename in the Prefix Map Table, to
determine the ID of the corresponding FDM arobject (let this value be fdm-aid). The result of the
FPMap operation (fdm-aid) is returned to the Client Arobject Interface. The CA Interface now invokes
the FDCreate operation on the correct instance of the Directory Management Arohject (fdm-aid). The
FDM Manager reads relevant pages of the directory into the buffer, and ensures that the file does not
already exist. It then calls the Arobject/Process Management Subsystem to create a file arobject
(using the CreateArobject primitive). The Arobject/Process Management Subsystem returns the {D of
the newly created file arobject. Next, the FetchArobjectStatus primitive is used to determine the

global page set ID for the root page set corresponding to this arobject. The Directory Manaqer then
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Figure 6-20: fnteractions in the Implementation of the CreateFile Primitive

makes an entry in the directory for the new file, showing the mapping of its filename and its GPSID. [t
writes the creation date in the file information block. It also invokes the FARestart operation on the
newly created file arobject to initialize it, and provide some information such as the file size. The FDM
Manager makes an entry for the file in the Open Files Tagle. and returns the ID of the file arobject to
the Client Arobject Interface. The CA Interface calls the File Arobject with an FAOpen request. The
open cperation i3 carried out, and the current filesize is roturned. The CA Interface then returns to
the cfient with the ID of the file.%

The interactions of the OpenFile primitive are quite similar to those of the CreateFile primitive. First,
the FPMap primitive is invoked by the Client Arobject Interface. Then, the FDOpen operation is
invoked. If the file has not already been opened by some other client, the FDM subsystem reads the
directory into the buffer to determine the global page set ID for the file. It then invokes the
Arobject/Process Management Subsystem to activate the inactive file arobject corresponding to the

38The lile 1D returned to the client arabject is different from#the 1) of the corresponding fe arobjecl. The CA Interface
maint3ins a mapping between the longer file arobject ID, and the shorter file ID which it generates.




[P oo e

190

GPSID. The active file arobject is initialized by FARestart, and an entry is made in the Open: Files
Table. The file arobject ID is returned to the CA Interface subsystem. Finally, FAOpen is called, and
the interactions of O nFile are complete.

The interactions in ReadFile and WriteFile are quite straightforward. The ReadFile and WriteFile
operations given by the client are buffered by the CA Interface. The FARead and FAWrite operations
are invoked by the CA Inferface as necessary. This reduces the number of interactions with the file
arobject.
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Figure 6-21: Interactions in the Implementation of the CloseFile Primitive

The CloseFile operation given by the client is translated to FAClose by the CA Interface (refer Figure
6-21), after first flushing the CA Interface buffers. The file arobject removes the client from the Open
Client List, and invokes the FDClose operation. The information block for the file is updated, and the
file is closed as explained in Section 6.6.4. The file arobject is told to CONTINUE, DEACTIVATE, or
KILL itselt, depending on other outstanding open requests, and whether the file has been deleted by
some other client. The file arobject replies to the FAClose operation, and then executes the specified
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action. If it has to deactivate or kill itself, it calls on the Arobject/Process Management Subsystem to

perform the necessary operation.

The interactions for DeleteFile are quite simple. The DeleteFile operation is translated to FDDelete
by the CA Interface, after first using the FPMap operation if necessary. The FDM subsystem calls the
Arobject/Process Management Subsystem to destroy the inactive file arobject, and then removes its
directory entry. If the file is open at the time the operation is invoked, a DELETE flag is set in the Open

Files Table, and the deletion is completed at the time of the last FDClose operation.

6.7 Page Set Subsystem

The main purpose of the Page Set Subsystem is to provide an abstract interface to the physical
secondary memory storage devices (disks). The abstraction provided is that of a set of /ogical disks,
each of which holds some number of page sets. A logical disk is a contiguous region (partition) of a
physical disk, consisting of N logical pages, numbered from 0 to N-1 BEach physical disk can contain
at most one ArchOS logical disk. However, the logical disk can be located anywhere on the physical
disk, and can possibly cover the entire disk. Each logical disk has a unique identifier (logical di;k ID)
permanently associated with it, i.e. it will always have the same logical disk ID, regardless of which
node or disk drive the disk is mounted on.

A page set is (conceptually) an infinite set of pages, numbered 0, 1, 2, ... . Any pages of a page set
which have not been explicitly written, are defined as containing all zeros.“OPages can be read or
written in any order within a page set, i.e. the pages of a page set are randomly accessible, and
sparse page sets are permitted. All of the pages comprising a single page set will be located on the
same logical disk. This helps reduce the number of page sets which would be affected by any single
disk or node failure. Every page set is given a page set ID, which is unique within the logical disk on
which it resides. A globally unique page set identifier (GPSID) can then he cnnstructed by combining
the logical disk ID with the page set ID.

ArchOS supports two different classes of page sets: standard page sets, and atomic page sets.
Standard page sets themselves come in three types: temporary, permanent, and dual. Temporary
page sets are intended to provide short term storage for data on secondary memory. They are

destroyed, and their pages automatically reclaimed by the system, following a crash. Temporary page

39Cum_mtly a page is defined to be 2K bytes in size, but that i3 a parameter which can be changed and tuned to obtain
“optimum’’ performance.

400' course, such unwritten pages do not occupy any space on the logical disk.
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sets are primarily used as the paging areas for the “volatile” segments of process address spaces,
such as the User Stack, User Heap, and Shared Normal Segments (see Section 6.2.3.5). In particular,
normal file arobjects (see Section 6.6) store all of their data in volatile segments, and hence in

temporary page sets.

Permanent page sets are primarily used to store permanent abstract data type instances, such as
permanent files. Permanent page sets survive system crashes, but their consistency following a crash
is not guaranteed. If a permanent page set was being actively modified at the time of a crash, some of
the modifications may be permanently recorded while others are lost. Furthermore, if a page was
being written precisely at the time of the crash, that page could be written incorrectly, resulting in the
loss of some data: Note that permanent page sets closely resemble the notion of ‘files’, as

commonly found in more conventional operating systems.

Dual page sets are like permanent page sets, except that each page is written atomically. !f a crash
occurs while writing a page i dual page §et. either the new contents of the page will be
permanently and correctly redorded, or the original contents will be recovered (as if the write
operation had never occurred). The atomic writing of an individual page is accomplished by carefully
writing two copies of the page (hence the name ‘‘dual” page set). For more details, see the
explanatian of “stable storage’ in [Sturgis 80]. Dual page sets are used for storing key data
structures, such as file system directories, for which it is important to minimize the amount of damage
in the event of a crash.

The final type of page set supported by ArchOS is the atomic nage set. Atomic page sets actually
represent a second major class of page sets, differing (somewhat) from standard page sets, both in
terms of their implementation and their user interface. Atomic page sets permit the grouping of
operations into atomic transactions, (either all of the operations will be completed, or none of them
will be). The operations comprising a single transaction can involve muitiple atomic page sets, stored
on any number of different logical disks, and spanning any number of system nodes. Furthermore,
operations are not restricted to being page-oriented. [nstead, arbitrary sequences of bytes can be
read or written. Thus, two separate transactions can modify different parts of a single page, without
interference or unexpected inconsistencies arising.

Atomic page sets also support the notion of nested transactions. Both elementary and compound
transactions can be arbitrarily nested, as explained in Section TMSEC. The commit or abort of a
(sub)transaction will be properly reflected in the contents of the affected atomic page sets. To

support this, the atomic page sets contain the intermediate states of all of the incomplete, nester
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transactions, in addition to the “current” page set contents. Atomic page sets provide complete
failure atomicity for “soft and clean’' failures, as defined in [Bernstein 83]. However, the consistency
of atomic page sets in the face of ‘‘concurrent” updates from separate transactions is not
automatically guaranteed. The lock management primitives of the Transaction Subsystem must be
used to ensure such consistency (see Section TMSEC). Atomic page sets are used to store atomic
abstract data type instanc_es. such as atomic files.

The Page Set Subsystem is implemented using four different types of kernel arobjects. Each node
of the distributed computer system will contain one or more instances of these four arobjects, as
illustrated in Figure 6-22. For each physical disk that is mounted on a node, a corresponding instance
of the Logical Disk Subsystem, the Standard Page Set Subsystem, and the Atomic Page Set
Subsystem will be created. In addition, each node will contain a single instance of the Page Set
Restart/Reconfiguration Subsystem. Figure 6-22 shows the '‘uses’ relationships among these

component subsystems.
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Figure 6-22: Major Components of the Page Set Subsystem
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The Logical Disk Subsystem builds the logical disk abstraction (discussed above) on top of the
available physical disk hardware. It manages the allocation of pages on the logical disk, and supports
multi-page read/write operations to/from either local or remote primary memory (buffer) areas. The
Standard Page Set Subsystem provides support for the three types of standard page sets: temporary,
permanent, and dual. It constructs these page sets using the facilities of the corresponding Logical
Disk Subsystem. Similarly, the Atomic Page Set Subsystem manages all of the atomic page sets that
are stored on the corresponding logical disk. Finally, the Page Set Restart/Reconfiguration
Subsystem (one per node) is responsible for constructing the three ‘‘per-disk’’ subsystems, for earh
disk that is mounted on its node. It allows disks to be ‘‘dynamically’” added and removed from the
system, without requiring the associated node to be completely restarted. In conjunction with this,
the Page Set Restart/Reconfiguration Subsystem cooperates with its peers on other nodes, to
maintain a global list (replicated at each node) of all the disks mounted anywhere within the

distributed computer system.

6.7.1 Standard Page Set Subsystem

" An instance of the Standard Page Set Subsystem kernel arobject is associated with each logical
disk in the system. The Standard Page Set Subsystem supports three types of page sets: temporary,
permanent, and dual. The same set of operations are provided for each of these types of page sets,
but the semantics of some of the operations vary slightly, depending on the page set type. For
example, the writing of pages in a dual page set is handled differently than in the case of a temporary
or permanent page set. The Standard Page Set Subsystem supports multi-page read/write access to
the contents of page sets, allowing greater efficiency than would be possible with a page-at-a-time
interface. The foliowing is the complete list of primitives provided by the Standard Page Set
Subsystem:

psid = PSCreate(type)
val = PSDestroy(psid)

npr = PSRead(psid, pnum, npages, buffer)
val = PSlIsZero(psid, pnum, npages)

npw = PSWrite(psid, pnum, npages, bufter)
npw = PSZero(psid, pnum, npages)

val = PSMove(psid, pnum, npages, to-pnum)

val = PSSync{[psid])
val = PSStatus(psid, statusbuffer)
val = PSRestart(disk-aid [, fast])
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PSID psid The identifier for the page set (unique within the logical disk). It includes an
indication of the page set type: TEMPORARY, PERMANENT, or DUAL.

BOOLEAN val TRUE if the specitied operation is completed successfully; otherwise FALSE.
INT npr, npw The actual number of pages read or written.

PSTYPE type The type of page set to be created: TEMPORARY, PERMANENT, or DUAL.
INT pnum The starting page number, within a page set, for the specified operation.

INT npages The number of pages involved in the"lspecified operation.

BUFFER *buffer  The buffer address in the kernel address space of either the local or remote node. _

INT to-pnum The destination page number, to which the specified pages are to be moved.

PSSTATUSBUFFER *statusbuffer ' _
The buffer address for returning status information (can be either a local or

remote kernel address).

AlD disk-aid The arobject ID of the Logical Disk Subsystem, associated with the disk to be
used by this instance of the Standard Page Set Subsystem.

BOOLEAN fast TRUE if_lthis is to be a fast restart, avoiding all of the disk checking and garbage
collection; otherwise FALSE. The default is FALSE.

The PSCreate primitive is used to create a new page set, of the specified type, on the disk
associated with this instance of the Standard Page Set Subsystem. The identifier for the new page set
(psid), which is unique within this logical disk, is returned. Initially, no pages are actually allocated to
the page set, i.e. reading any page will return ail zeros. The PSDestroy primitive frees all pages

belonging to the specified page set (psid), and remaves all record of that page set from the disk.

PSRead reads multiple (npages) pages, beginning with pnum, from page set psid, into the given
primary memory bufter. it the butter is located on a remote node, the required copying of data across
the network will be handled automatically by the Logical Disk Subsystem (see Section 6.7.3). Any
pages which have never been explicitly written will be read as.all zeros. PSRead returns the number
of (non-zero) pages which were actually read. PSisZero can be used to check whether the specified
range of pages, in the given page set, are ail zero (unallocated). f so, it returns TRUE; otherwise
FALSE.
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PSwrite writes multiple (npages) pages from the given primary memary buffer, into page set psid,
beginning at page number pnum. The number of pages actually written is returned. As with PSRead,
the buffer can be located on either the local or a remote node. Any necessary cross-network data
copying will be handled automatically by the Logical Disk Subsystem. PSZero provides a means for
efficiently “zeroing” (deallocating) a range of pages within a page set. It is especially useful for
“truncating the tails of page sets, which is accomplished by zeroing the highest numbered
(allocated) pages. The number of pages actually zeroed (i.e. the number of previously allocated

pages which have now been deallocated) is returned.

PSMove can be used to ‘'move"” the specified range of pages within page set psid, to the new
location specified by to-pnum. Overlapping source and destination ranges are permitted, with the
result being equivaient to first deallocating all of the pages in the source and destination regions,
followed by rewriting the original source pages into their destination locations. Among other things,
PSMove can be used for ‘‘truncating the heads’" of page sets, by specifying page zero as the '
destination, and moving all of the tail pages forward.

The PSSync primitive ensures that any buffered information within the Standard Page Set
Subsystem is consistent (synchronized) with the information on secondary memory. If a particular
page set (psid} is specified, only butfered information related to that page set is guaranteed to be
consistent with the secondary memory information.* The PSStatus primitive returns (in statusbuffer)
information about the specified page set (psid). This includes the page set type, its maximum

allocated page number (virtual size), and its actual number of allocated pages (physical size).

PSRestart initializes the Standard Page Set Subsystem, for the logical disk specified by disk-aid. It
checks to ensure that the main secondary memory data structure (the Standard Page Set B-Tree,
discussed below) is accessible and consistent, and ensures that the pages of any dual page sets are
also consistent, by using the DKRecoverDual primitive of the Logical Disk Subsystem (see Section
6.7.3). A side effect of using DKRecoverDual is that all of the pages in the Standard Page Set B-Tree,
and all of the dual page set data pages, will be marked as ailocated. PSRestart then marks (as
allocated) all of the data pages belonging to any permanent page sets stored on the disk (see the
discussion of DKMark in Section 6.7.3). Finally, P§Restart ''destroys'’’ any temporary page sets which
still reside on the disk, by caretully removing their entries from the Standard Page Set B-Tree.

41Thls may require much less time than synchronizing a// of the buifered information.
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*2pgRestart shoutd only be invoked when the Standard Page Set Subsystemn is first created by the
Page Set Restart/Reconfiguration Subsystem (see Section 6.7.4 below), i.e. when the associated
logical disk is first added to the system. The optional parameter (fast) can be used to indicate that a
fast restart is in progress, and hence ali of the consistency checks, page allocation marking, and
removal of temporary page sets can be skipped. For more details concerning restart and garbage
collection activities, see Section 6.7 4.

6.7.1.1 Components of the Standard Page Set Subsystem

Each instance of the Standard Page Set Subsystem kernel arobject (one per logical disk) has the
simple structure illustrated in Figure 6-23. It consists of two main components: a single Manager
process, and a B-Tree Buffer. The Manager handles ail of the Standard Page Set primitives,
discussed above. It uses the facilities of the associated Logical Disk Subsystem, in order to store,
access, and manipulate the page sets recorded on its corresponding logical disk. Note that the
Standard Page Set Subsystem itseif does no buffering of data pages. It is left to the Logical Disk

Subsystem to transfer data directly into and out of client buffers.
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B8-Tree Buffer

B-Tree 8-Tree
Node Node
Standard
Page set 8-Tree B-Tree
Manager Node Node
Request _/“\/‘\/“N/*\/‘\/‘\J
Logical Disk Reply
(2K) Result
Operation

Figure 6-23: Components of the Standard Page Set Subsystem

42lt is assumed (unless a “fast” restart is in progress) that all of the pages on the logical disk have been “freed” prior to

inveking PSRestart. As a result, the page ailocation information must be reconstructed, and untl it is, all requests to allocate
new logical disk pages must be avoided. PSRestart must mark (as allocated) all of the pages which are part of the Standard
Page Set Subsystem. Since none of the data pages from temporary page sets are marked. they are automatically freed.
However, the record of the paqges allocated to temporary page sets is still stored in the Standard Paqge Set B-Tree. and must be
removed. The removal of entries from the B-Tree is a “'safe’” cperalion, since it does not require the allocation of any new
logical disk pages, although it may involve the freeing of some pages from the B-Tree.
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The B-Tree Buffer holds the most recently accessed nodes (pages) of the Standard Page Set B-Tree
for this logical disk. The Standard Page Set B-Tree is the data structure used to record the sets of
logical disk pages. comprising the standard page sets stored on this disk. The use of a B-tree [Comer
79] for this purpose is quite similar to its use in the Xerox Distributed File System (XDFS) (Sturgis
80, Mitchell 82]. The logical structure of the Standard Page Set B-Tree is illustrated in Figure 6-24.

Root
(Interior Node) Interior Nodes Leaf Nodes
> >
Header f Header f Header f
Data
4 g S P
q P ) age
: Data
Header Header Page

psid pnum 1dpnum

Figure 6-24: Standard Page Set B-Tree

In essence, the B-tree maintains a sorted list of data pages, ordered by page set ID (nsid), and page
number within psid. This allows the mapping from (psid, pnum) to the logical disk page number
(Idpnum) to be be performed very quickly. Each node of the B-tree is stored as a dual logical disk
page, in order to improve the reliability of the data structure. In addition to page mapping information,
each node contains a small amount of header information, which indicates the type of node (interior
or leaf), and the number of page map entries. Every map entry, whether in an interior or a leaf node,
has the same structure (usid, pnum, idpnum). However, the type of page pointed to by /dprium will
differ, depending on whether the node is interior or a leal. A pointer to the roat node of the B-tree (its

Idpnum) is stored in page zero of the logical disk, so that the Standard Page Set Subsystem can
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always find its B-tree data structure.*

Note that the type of each page set {temporary, permanent, or dual) is included in the page set ID
(psid). When a page set is first created, an entry for page number zero is added to the B-tree, with
ldpnum set to zero to indicate that the page has not really been allocated yet. As pages are written or
zeroed, appropriate entries are added or removed from the B-tree. However, there will always be an
entry (whether allocated c.>r not) for page zero of each page set that exists. Note that the structure of
the B-tree allows all of the status information for each page set (its type, logical size, and physical
size) to be determined quite easily. It also permits the pages of a page set to be written, read, and

zeroed very efficiently.

In terms of storage overhead, the B-tree structure is also quite reasonable. If we assume that psid,
pnum, and_/dpnum are each 32 bits (4 bytes) long, then a single B-tree node (2K byte page) can
contain 170 map entries, with 8 bytes remaining for header information. Since each leaf page of the .
B-tree is dual/, and can map 170 data pages, only a little over one percent of the logical disk pages
belonging to the Standard Page Set Subsystem should be needed for storing the B-tree itself.
Furthermore, it should be noted that with 170 entries per node, a three level B-tree can map 170° data
pages, which is caonsiderably more than can be contained on any disk that is likely to be used as an
ArchOS togical disk. Thus, the Standard Page Set B-Tree will be a maximum of three levels deep.

A special note should be made concerning the Standard Page Set B-Tree Buffer, illustrated earlier
in Figure 6-23. Although (for clarity of exposition) each instance of the Standard Page Set Subsystem
is shown as having its own buffer area, in practice, all instances on a single node would share a
common Kernel Page Buffer Pool. Indeed, the Kernel Page Buffer Pool would be shared with many
other subsystems on that node as well: Logical Disk Subsystems, Atomic Page Set Subsystems, File
System Disk Directory Management Subsystems, and so on. Each subsystem allocates pages from
the Kernel Page Buffer Pool (in least recently used order) as required. Pages are then returned to the
pool (freed) as soon as they are no longer being actively used. Each subsystem maintains a list of the
“tree” pages in the buffer pool, which it has used recently. This list provides "hints’' about pages in
the buffer pool which may still contain information of use to the subsystem, i.e. they are buffer pages
which can be reclaimed, rather than reading the information again from disk, assuming the pages

have not already been reused by some other subsystem.

43F’age zero of each logical disk is a special dual page, which contains pointers to all of the major data structures on the
disk. it also contains information about the disk itself, such as its size and its logical disk 1D.
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6.7.2 Atomic Page Set Subsystem

The Atomic Page Set Subsystem is quite similar to the Standard Page Set Subsystem, except that it
provides the “‘atomic page set’ abstraction. The primary difference between the standard and atomic
page set abstractions is that the consistency of atomic page sets will be maintained in the event of a
crash. In addition, the Atomic Page Set Subsystem allows arbitrary sequences of bytes to be read or
written, rather than restricting the operations to being page-oriented. Atomic page sets are primarily
used for storing atomic abstract data type instances, such as atomic files. As with the Standard Page
Set Subsystem, an instance of the Atomic Page Set Subsystem is created for each logical disk in the

distributed computer system.

The Atomic Page Set Subsystem provides primitives for *‘committing” arbitrarily nested elementary
and compound transactions, in two phases: the prepare phase, and the comint phase. These two
phases can be used by the Transaction Management Subsystem, as part of its three phase commit
protocol (see Section TMSEC). Using the mechanisms provided here, it is possible to atomically
commit (or to abort) transactions which span mulitiple logical disks, and multiple nodes. It should be
noted that the Atomic Page Set Subsystem only provides support for the properties of failure
atomicity, and durability [Eswaran76, Gray81]. The sequencing and scheduling of concurrent
transactions, So as to ensure consistency, is assumed to be handled by the Transaction Management

Subsystem. The actual primitives provided by the Atomic Page Set Subsystem are the following:

psid = APSCreate(tid)
val = APSDestroy(tid, psid)

nbr = APSRead(tid, psid, location, nbytes, buffer)
val = APSlIsZero(tid, psid, location, nbytes)

nbw = APSWrite(tid, psid, location, nbytes, buffer)
nbw = APSZero(tid, psid, location, nbytes)

val = APSMove(tid, psid, location, nbytes, to-location)
val = APSPrepareCommit(tid)
val = APSCommit(tid)
val = APSAbhort(tid)
val = APSStatus(psid, statusbuffer)
val = APSRestart(disk-aid [, fast])
PSID psid The identifier for the atomic page set (unique within the logical disk). It includes

an indication of the page set type (ATOMIC).

BCCOLEAN val TRUE if the specified operation is completed successfully; otherwise FALSE.
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INT nbr, nbw The actuat number of bytes read or written.
TID tid The ID of the transaction to which this operation belongs. From the tid it is

possible to determine the transaction type, as well as the parent transaction ID (if
this is a nested transaction).

. INT location The starting location (byte offset from the beginning of the atomic page set) for
the specified operation.

INT nbytes The number of bytes involved in the specified operation.

BUFFER *buffer  The buffer address in the kernel address space of either the local or remote node.

INT to-location The destination location, to which the specified bytes are to be moved.

APSSTATUSBUFFER *statusbuffer
The buffer address for returning status information (can be either a iocal or
remote kernel address).

AID disk-aid The arobiject ID of the Logical Disk Subsystem, associated with the disk to be
used by this instance of the Atomic Page Set Subsystem.

BOQLEAN fast TRUE if this is to be a fast restart, avoiding all of the disk checking and garbage
collection; otherwise FALSE. The default is FALSE.

The APSCreate primitive is used to create a new atomic page set, on the disk associated with this
instance of the Atomic Page Set Subsystem. A transaction ID (t/d) is specified, co that the new atomic
page set will only come into permanent existence when transaction tid commits.**Until then, the new
page set is only visible within this transaction, or within any nested subtransactions of tid. APSCreate
returns the identifier for the new atomic page set (psid), which is unique within this logical disk.
Initially, no pages are actually allocated to the page set, i.e. reading any part of it will return all zeros.
The APSDestroy primitive frees all pages belonging to the specified atomic page set (psid), and
removes all record of that page set from the disk. As was the case with APSCreate, the specified

: transaction ID (tid) determines when the effects of APSDestroy will be permanently committed, as well

as the scope of their visibility in the interim.

APSRead reads nbytes bytes into the given buffer, beginning from byte location in atomic page set

psid. The transaction ID (tid) is taken into account when determining which modifications (if any) to

It nd 18 a nested elementary transaction, the new atomic page set will only come into permanent existence when the
top-level parent of tid commits.
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the specified bytes, by transactions which have not yet committed, should be visible to this read
operation. If the bufter is located on a remote node, the data wiil be automatically copied across the
network, using the special kernel Copy primitive. Any bytes which have never been explicitly written
will be read as zeros. APSRead returns the number of (non-zero) bytes which were actually read.
APSisZero can be used to check whether the specified range of bytes, in the given atomic page set,
are all zero. If so, it returns TRUE; otherwise FALSE. The specified transaction ID serves the same
purpose as in the case of APSRead.

APSWwrite writes nbytes bytes from the given buffer, into atomic page set psid, beginning at byte
location. The number of bytes actually written is returned. The specified transaction 1D (tid)
determines when the effects of APSWrite will be permanently committed, as well as the scope of their
visibility in the interim. As with APSRead, the buffer can be located on either the local or a remote
node. Any necessary cross-network data copying will be handled automatically, using the special
kernel Copy primitive. APSZero provides a means for efficiently “‘zeroing’ a range of bytes within an
atomic page set. The specified transaction ID serves the same purpose as in the case of APSWrite.
When complete pages are zeroed, they are removed from the page set (deallocated). APSZero is
especially useful for “'truncating the tails” of atomic page sets, which is accomplished by zeroing the
highest numbered (non-zero) bytes. The number of bytes actually zeroed (i.e. the number of

previously non-zero bytes which have now been zerored) is returned.

APSMove can be used to “move” the specified range of bytes within atomic page set psid, to the
new location specified by to-/ocation. The transaction ID (tid) serves the same purpose as in the case
of APSWrite and APSZero. Overlapping source and destination ranges are permitted, with the result
oeing equivalent to first zeroing all of the bytes in the source and destination regions. followed by
rewriting the original source bytes into their destination locations. Among other things, APSMove can
be used for “truncating the heads’ of atomic page sets, by specifying location zero as the

destination, and moving all of the tail bytes forward.

The APSPrepareCommit primitive is used in phase one of the two phase trancaction commit
sequence for atomic page sets. All modifications to atomic page sets on this logical disk, which were
made in the course of the specified transaction (tid), are carefully recorded in a special *Commit List"
on secondary memory. These modifications can no longer be lost in the event of a crash.
Transaction tid is flagged (on the disk) as "prepared to commut'. The invoker is then informed
{through the return value, vaf), of the Atomic Page Set Subsystem’s readiness to commit the
transaction. Following successful completion of the APSPrepareCommit primitive, the only allowed

operation involving transaction tid is APSCommit or APSAbort. Note that APSPrepareCommit need
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not be invoked in the case of a nested elementary subtransaction (it has no effect). Such a
subtransaction does not actually modify the permanent contents of the atomic page sets, until its top
level parent transaction commits. Hence, a two phase commit sequence is unnecessary, since any

failure will cause the parent transaction, as well as this *committed'’ subtransaction, to be aborted.

APSCommit is used in phase two of the two phase transaction commit sequence. It is also the only
primitive required to ‘‘commit”’ a nested elementary subtransaction. In this latter case, APSCommit
does not actually modify the permanent contents of the atomic page sets. Instead, it simply makes all
of the mcdifications which were made in the course of the specified transaction {t/d) visible to the
parent of tid. When APSCommit is applied to a top level elementary transaction, or to any compound
transaction, the specified transaction (tid) must already have been ‘“prepared’” (with
APRSPrepareCommit), in phase one of the commit sequence. In this case APSCommit is the second
(final) phase of the commit sequence, and it is responsible for carefuily updating the “permanent”
contents of the atomic page sets, based on the modification information contained in the Commit List.
APSCommit first flags (on the disk) transaction tid as “committed”. It then returns the result (va/) to
the invoker, allowing the invoker to continue its execution while the Atomic Page Set Subsystem

makes the required modifications to the atomic page sets.

- The APSAbort primitive is used to abort the specified transaction (tid). This involves removing
(undoing) all modifications made within transaction tig, or any of its nested subtransactions (except
alreacy committed compound subtransactions). Note that transactions which have been "prepared”,
but not yet committed, can still be aborted. In that case the aborted modifications must be carefully

removed from the Commit List.

The APSSiatus primitive returns (in statusbuffer) information about the specified atomic page set
(psid). This includes its virtual size (maximum non-zero byte location), physical size (actual number of
allocated bytes), and an indication of which uncommitted transactions, if any, are stii operating on
this page set. Note that since no transaction ID is specified with the APSStatus prinitive, the sizes

reported are those of the current, '‘permanent’ version of the atomic page set.

APSRestart initializes the Atomic Page Set Subsystem, for the logical disk specified by disk-aid. It
checks to ensure that the main secondary memory data structures (the Atomic Page Set Permarient
and Commit B-Trees, discussed below) are accessible and consistent, by using the DkRecoverDual
primitive of the Logical Disk Subsystem (see Section 6.7.3). A side effect of using DKRecoverDual is
that all of the pages in the Permanent and Commit B-Trees will be marked as allocated. APSRestart

then marks (as allocated) all of the data pages belonging to any atomic page sets stored on the disk,
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and also marks all of the data pages associated with the Commit List (see the discussion of DKMark in
Section 6.7.3).‘5Finally, APSRestart completes the processing of any transaction which is in the
Commit List, and flagged as “‘committed”. This involves carefully updating the permanent contents of
the atomic page sets, based on the modification information contained in the Commit List.
46apSRestart should only be invoked when the Atomic Page Set Subsystem is first created by the
Page Set Restart/Reconfiguration Subsystem (see Section 6.7.4 below), i.e. when the associated
logical disk is first added to the system. The optional parameter (fast) can be used to indicate that a
fast restart is in progress, and hence all of the consistency checks and page allocation marking can
be skipped. However, any remaining commit processing must stilt be performed, even in the case of a

fast restart. For more details concerning restart and garbage collection activities, see Section 6.7.4.

6.7.2.1 Components of the Atomic Page Set Subsystem

Each instance of the Atomic Page Set Subsystem kernel arcbject {(one per logical disk) has the
general structure illustrated in Figure 6-25. It consists of five main components: a single Manager
process, three B-Tree Buffers, and a Data Page Buffer. The Manager handles all of the Atomic Page
Set primitives, discussed above. It uses the facilities of the associated Logical Disk Subsystem, in
order to store, access, and manipulate the page sets recorded on its corresponding logical disk.

The four butfers in Figure 6-25 are primarily shown for clarity of exposition. In practice (as
explained in Section 86.7.1), each instance of the Atomic Page Set Subsystem would not have its own,
separate buffer areas. Instead, it would allocate buffer pages from a common Kernel Page Buffer
Pool, and maintain "“‘hints lists concerning those pages which it most recently returned to the pool.
For our purposes, however, it is more convenient (and not entirely inaccurate) to regard each
instance of the Atomic Page Set Subsystem as having its own buffer areas.

The Permanent B-Tree Buffer holds the most recently accessed nodes (pages) of the Atomic Page
Set Permanent B-Tree, for this logical disk. The Permanent B-Tree is the data structure used to
record the sets of logical disk pages, comprising the current, permanent versions of the atomic page
sets, stored on this disk. The logical structure of the Permanent B-Tree is identical to that of the
Standard Page Set B-Tree, as discussed at length in Section 6.7.1, and illustrated in Figure 6-24,
Refer to that Section for details. However, updating the Permanent B-Tree must be done more

ﬁAt this point, since PSRestart is assumed to have been invoked prior to APSRestart, all of the page allocation information

for the logical disk has been reconstructed. Hence, it is now safe tn allocate new logical disk pages, as requircd, without
danger of reallocating pages that are already in use.

‘eNote that commit processing can be done *‘in the background' (after returning the resuit val to the invoker), just as in the
case of APSCommit.
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Figure 6-25: Components of the Atomic Page Set Subsystem

carefully than in the case of the Standard Page Set B-Tree, since in this case the update must be
done atomically with respect to system failures. The technique for carefully (atomically) updating the
Permanent B-Tree is outlined briefly in the discussion of transaction commit handling, below. As with
the Standard Page Set B-Tree, a pointer to the root node of the Permanent B-tree (its /dpnum) is
stored in page zero of the logical disk, so that the Atomic Page Set Subsystem can always find it.

The Moditication B-Tree Buffer holds the most recently accessed pages of the Atomic Page Set
Modification B-Tree. The Modification B-Tree is a temporary data structure, which contains the list of
modifications that have been made to atomic page sets, in the course of the currently active,
uncommitted transactions. Although the modification list is usually expected to be quite short,
storing it as a B-tree will allow it to grow arbitrarily large, when needed. The general structure of the
Modification B-Tree is similar to that of the Permanent B-Tree and the Standard Page Set B-Tree (see
Figure 6-24). However, the nodes of the tree are stored in normal (rather than dual) pages, since this
is a temporary data structure that will be “thrown away’' automatically following a crash. The
structure of a leaf node of the Modification B-Tree, along with its asscciated data pages, is illustrated
in Figure 6-26.

The Modification List (B-Tree) is ordered by (tid, psid, pnum), and allows the mapping from these
triples to the associated page modifications, to be performed very quickly. Page mcdifications are
represented by a Data Page, containing the new values for the modified bytes within the page, and a

Mask Page, which indicates which bytes have been modified. Madificd bytes are indicated by a
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Figure 6-26: Atomic Page Set Modification List

corresponding Mask Page byte with hexadecimal value FF. Unmadified bytes have valua zarg in baoth
the Data Page and the Mask Page.*’If the entire Data Page has been modified, then the Mask Page
can be omitted (mask Idpnum = 0). if the entire Data Page has been zeroed, then the Data Page can
also be omitted (data /dpnum = 0). One other special case is that ¢f atomic page sets that have been
destroyed. In this case the Modification List contains only an entry for page zero oi the destroyed
page set, and mask /dpnum = data Idpnum = DESTROYED. Use of the Modification List when
accessing and modifying the atomic page sets, and when committing or aborting transactions, is
discussed below in Sections 6.7.2.2 and 6.7.2.3.

Another major data structure of the Atomic Page Set Subsystem, illustrated earlier in Figure 6-25, i3
the Commit B-Tree Buffer. it holds the most recently accessed pages of the Atomic Page Set Commut
B-Tree, which is the data structure used to record the Commit List (the list of atomic page set
modifications, made by transactions which are in the process of being committed). As with the
Modification List, the Commit List is usually expected to be quite short. However, storing it as a B-tree

will allow it to grow arbitrarily large, when needed. The structure of the Commit B Tree is almost

‘7Although a bit map could be used in place of the current (byte map) Mask Page. the paae onented nature of the logical

disk on which the maps are stored makes the current design more convenient. in uddib ., .2 mmHaons are usually
more convenient and efficient than it manipulations, in most current programming lanquac s ang daare gichitectures
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identical to that of the Modification B-Tree, except that the nodes of the tree are stored in dual (rather
than normal) pages. See Figure 6-26 above for an illustration of the structure of a leaf node of the
Commit B-Tree. Updating the Commit B-Tree must be done carefully (i.e. atomically with respect to
system failures), just as in the case of updating the Permanent B-Tree. This is to avoid any possible
corruption or accidental loss of transactions, after they have been flagged as “prepared to commit".
A pointer to the root node of the Commit B-Tree is stored in page zero of the logical disk, so that the
Atomic Page Set Subsystem can always find it at restart time.

The final major componenf of the Atomic Page Set Subsystem is the Data Page Buffer. Unlike the
Standard Page Set Subsystem, the Atomic Page Set Subsystem must often manipulate subparts (byte
ranges) within data pages. The relevant pages are held in the Data Page Buffer while they are being
operated on. Similarly, modification Mask Pages are constructed, accessed, and modified by the

Atomic Page Set Subsystem, using the Data Page Buffer for temporary storage.

6.7.2.2 Accessing and Modifying Atomic Page Sets

Any access or madification to an Atomic Page Set must be done in the context of a transaction,
specified by tid. All modifications made in the course of a particular transaction are first recorded
(temporarily) in the Modification List. For example, assume that the following invocation has been

made:
nbw = APSWrite(tid, psid, location, nbytes, buffer)

Then the Mcdification List will be searched for (tid, psid, pnum), where pnum is the page containing
the bytes specified by /ocation and nbytes.*81f not found, a new entry with that key will be inserted in
the list, with pointers to newly allocated (and completely zeroed) Mask and Data Pages. In either
case, the specified hytes of the Data Page are set to the contents of buffer, and the corresponding
bytes of the Mask Page are “turned on'’ (set to hexadecimal FF).

Accossing the current contents of an atomic page set is a little mere involved. For example, assume
that the following invacation has been made:
nbr = APSRead(tid, psid, location, nbytes, buffer)

Then tid must be taken into account when determining which modifications (if any) have been made
to the specified bytes, and should be visible within this transaction. The Modification List is first
searched for (tid, psid, pnum), where pnum is the page containing the bytes specified by /ocation and
nbytes. The Maodilication List is then successively searched for the ancester transactions of td, to

see if any of them have modified the page in question. As relevant entries are tound, a Compound

‘aTo simphify our exampies, wa will omit the details concerning the handling of multiple pages. and the crosring of page
boundarnes.
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Mask and Compound Data Page are constructed, such that the modifications made in
subtransactions take precedence over their ancestors. This can be easily accomplished (at least
conceptually) using bitwise logical operations on entire Mask and Data Pages. For example, to merge
another (ancestor) Data Page (Data) and Mask Page (Mask) into the Compound Data and Mask Pages

that have been constructed thus far, the following equations can be used:

CompoundData = CompoundData OR (Data AND (NOT CompoundMask))
CompoundMask = CompoundMask OR Mask

If. at any point in the construction of the Compound Data and Compound Mask Pages, it is found
that the entire page has been maodified, then there is no need to search any further. The requested
bytes can he obtained directly from the Compound Data Page, and returned in buffer. Qtherwise, the
modifications indicted by the Compound Mask and Compound Data Pages (if any) must be applied
(conceptually) to the corresponding page in the Atomic Page Set Permanent B-Tree. This is done
using the same formula as shown above, where in this case "“Data’” is the Permanent Data Page. The
requested bytes can then be obtain directly from the Compound Data Page (as before), and returned

in buftfer.

Note that, because of the buffering provided in the Atomic Page Set Subsystem, most manipulations
of the Mcdification List, including Mask and Data Pages manigulaticns, will not require actual disk
operations. Furthermore, page-at-a-time access to atomic page sets will usually be much more
efficient than manipulating a small number of bytes with each operation, and it can be made even

more efficient by treating it as a special case.

6.7.2.3 Transaction Commit and Abort Handling

All modifications to atomic page sets are first made on a temporary basis, by recording them in the
Modification List, as outlined above. A modification will only become ‘“permanent’ after its
associated transaction (tid) has been committed. In the case of a nested elementary subtransaction,
a modification can only become permanent after the top level ancestor transaction commits. This is
because any failure (or abort) of an ancestor transaction, will cause the modifications made in any
elementary subtransactions {o also be aborted. When a nested elementary subtransaction (tid)
commits, all of its modifications become visible to its parent transaction (parent-tid). "This is
accomplished by simply ‘‘renaming’’ all of the tid entries in the Modification List, to have transaction
ID parent-tid. In case of conflicts, the modifications made in tid take precedence over the
modifications made in parent-tid. This is done by constructing a Compound Mask and Compound

Data Page, using the same equations as discussed above.

Committing a top level elementary transaction. or any compound transaction (whether nested or
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not) causes all of its macdlifications to be permanently made to the affected atomic page sets. These
modifications must be made very carefully, so as to preserve the atomic properties of the page sets
{failure atomicity and durability). Since a transaction may span more than one logical disk, and more
than one computing node, a two phase commit sequence is needed to coordinate the atomic updates
of the various Atomic Page Set Subsystems, and to make them all occur as a single atomic update. In
the first phase of the transaction commit sequence, the APSPrepareCommit primitive is invoked on
each of the Atomic Page Set Subsystems involved in transaction tid. In response to
APSPrepareCommit, each Atomic Page Set Subsystem must carefully record, in its Commit List, all of
the modifications for transaction tid, so that they can no longer be lost in the event of a crash. This
basically involves moving all of the entries with transaction 1D tid, from the Modification List to the
Commit List. However, to avoid inconsistencies in the Commit List, and the attendant loss of
previously committed transactions, any updates to the Commit List must be done atomically with
respect to system failures. The technique for atomically updating the Commit List B-tree is the same

as that cutlined below, for the case of the Atomic Page Set Permanent B-Tree.

After all of the Atomic Page Set Subsystems have indicated that they are prepared to commit
transaction tid, the second phase of the commit sequence can begin. Phase two is signalled to each
of the Atomic Page Set Subsystems by invoking the APSCommit primitive. In response to
APSCommit, each subsystem simply flags transaction tid as committed, and replies that it has
completed the request. This allows the invoker to continue its execution, while the Atomic Page Set
Subsystem actualily carries out the required commit processing. Flagging a transaction as committed
is accomplished by writing its transaction ID (tid) into the header portion of the root node of the
Commit List B-Tree. Note that since the nodes of the B-tree are stored as dual logical disk pages,

updating the root node on disk will be an atomic operation.

Once a transaction has been flagged as committed, an Atomic Page Set Subsystem will not accept
'any other requests for operations on atomic page sets, until it has completed the necessary commit
processing. Committing transaction tid basically requires carefully (atomically) updating the
"permanent” contents of the atomic page sets (as stored-in the Atomic Page Set Permanent B3-Tree),
based on the modification information contained in the Commit List. The possible types of
modifications are: (1) the insertion of new pages (including entirely new page sets); (2) the
modification of existing pages; (3) the removal (zeroing) of existing pages; and (4) the removal
(destruction) of entire page sets. The key to making all of the modifications for transaction ti4 occur
atomically, is to never actually modify any existing node or data pages in the Permanent B-Tree
{except one). Instead new pages, reflecting the required modifications. are constructed as

necessary. Then, all of the modifications can be made permanent at the same time, by atomically
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updating a single Permanent B-tree node: the node at the root of the (minimum) subtree which
encompasses all of the modifications. For more details concerning this technique, see [Mitchell 82},

where the XDFS approach to atomically updating a file system B-tree is discussed.

After the Permanent B-Tree has been atomically updated, the modifications for transaction tid must
be carefully removed from the Commit List, and tid erased from the header of the Commit List root
node. This updating of the Commit List can all be done atomically, using the same technique as
outlined above for the Permanent B-Tree. Note, however, that there is a pericd of time between the
atomic updating of the Permanent B-Tree and the atomic updating of the Commit List, during which a
system failure could occur. If a failure occurs during that time, the Atomic Page Set Subsystem will
automatically (upon system restart) attempt to apply the modifications for transaction tid once again.
This will not cause any problems, however, since all of the possible modifications to the Permanent
8-Tree, as listed earlier, are idempotent (i.e. they can be repeated multiple times without changing the
final result). When at last the Atomic Page Set Subsystem is able to complete the commit processing .

for transaction tid, it can then return to accepting new requests for operations on atomic page sets.

Besices committing, the other possible outcome for a transaction is that it aborts. A transaction
(tid) can be abarted at any time, prior to being committed with APSCommit. The Atomic Page Set
Subsystem is notified of transacticn aborts by means of the APSAbort primitive. When a transaction is
acorted. ail of the modifications made within it, or any of its nested subtransactions {except already
committed compound subtransactions), must be removed (undone). This is accomplished by
removing all entries for transaction tid, and all of its subtransactions, from both the Madification List
and the Commit List. Note that if entries are to be removed from the Commit List, it must be done

atomically, using the standard technique outlined above.

6.7.3 Logical Disk Subsystem

Each physical disk that is being used by the ArchQS system has a corresponding '.ogical Disk
Subsyctem Kernel Argobject. These Arobjects are created and destroyed as disks are mounted and
dismounted (see Restart/Reconfiguration Subsystem, Section 6.7.4). A physical disk can have at
mest one ArchOS partition on it, and only that portion of the disk will be used by Arch0OS. We refer to
the ArchQS partition of a disk as a logical disk. A logical disk can simply be viewed as a sequence of
pages. where a page is (currently) defined to oe 2K bytes in size. Pages on the disk are numbered
from O to N-1, where M is the total number of pages on the iogical disk. A logical dizx has a unique

identitier permanently associated with it, regardless of where the disk is currently mounted.

Zach instance of the Logical Disk Subsystem is responsible for managing the altocation of pagyes on
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its corresponding logical disk. It also keeps track of the bad (unusable) pages on the disk, so that
they are not made available for allocation and later use. As much as possible, the Logical Disk
Subsystem “‘optimizes” access to the physical disk, by allocating, reading, and writing multiple pages
at a time, and ordering operations so as to minimize disk heay movement. It also provides a degree of
“network transparency’’, by automatically buffering and transferring data between the local and

remote machines.

In addition to NORMAL (single) pages, the Logical Disk Subsystem also supports the concept of
DUAL pages. A DUAL page is written more carefuily than a NORMAL page, so that if a crash occurs
while writing a DUAL page, its original contents can still be recaovered. In this way, a simple, basic
form of failure atomicity is provided. As the name suggests, each DUAL page is implemented using
two single pages. DUAL pages are used for saving important data structures, and as a building block

for implementing more complex atomic operations.

The Logical Disk Subsystem provides the following set of primitives:

pagelist = DKAllocate(npages, type [, follows])
val = DKFree(pagelist)

npr = DKRESd(pagelist. buffer)
npw = DKWrite(pagelist, buffer)

val = DKSync()
val = DKStatus(statusbuffer)

val = DKRestart(dev-name)
val = DKRecoverDual(pagelist)

val = DKUnmark()

val = DKMark(pagelist)
val = DKGood()

val = DKBad(pagelist)

PAGELIST pagelist List of 32-bit logical disk page numbers, where the first 8 bits of a page number
are used for various flags, and the remaining 24 bits are converted to the cylinder,
track, and sector numbers of the physical disk. The first flag bit indicates whether
the page is DUAL or MORMAL.

BOGLEAN val TRUE if the specified operation is done successfully; otherwise FALSE.

INT npr The actual number of pages read.
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INT npw The actual number of pages written.
INT npages The number of pages to be allocated.
PAGETYPE type The type of pages to be aliocated: NORMAL or DUAL.

PAGEID follows Logical disk page number, following which the new pages are to be allocated
(physically as close as possible).

BUFFER *buffer  The buffer address in the kerne! address space of either the local or remote node.
DKSTATUSBUFFER “statusbuffer
The buffer address for returning status information (can be either a local or

remote kernel address).

OEVYNAME dev-name
The logical device name.

The DKAllocate primitive allows a number of pages to be allocated at a time, and it returns a list of
the aliccated logical disk page numbers. An attempt is made to allocate pages which are physically
close icgether on disk. The pages can be of type NORMAL or DUAL, and a preferred location on disk

(near an existing page) can be specified. The DKFree primitive dealiocates the specified list of pages.

DKRead reads a list of pages into the specified kernel buffer, and returns the count of pages
actually read. Similarly, DK Write writes a list of pages from the specified kernel huffer, and returns the
count of pages actually written. When the buffer is in a remote kernel, DKRead and DKWrite

automatically handle the cross node copying of data.

The DK Sync primitive ensures that any buffered information within the Logical Disk Subsystem is
consistent (synchronized) with the version on disk. The DKStatus primitive provides information
about dick utilization, frequency of access, frequency of errors, numkter of bad blccks, and so on. It
can be used, for example, by the Arobject/Process Management Subsystem, to determine the

ptacement of process address space paging areas.

DKRestart is used only when the system is restarted. It initializes the disk hardware and any internal
data structures. The DKRecoverDua/ primitive recovers the given list of DUAL pages. by ensuring that
the two copies of each DUAL page are consistent (see {Sturgis 80} tor details). This is uscd by

various subsystems when recovering thewr data structures after a crash.

The DKUnmark and DKIJark primitives are provided to help in garbage collection. First. O ark
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is used to flag ail of the pages on the disk (except bad pages) as free. Then, DKMark is used
(repeatedly) to fiag the specified pages as allocated. Similarly, DKGood and DKBad are used for
managing the bad pages (unusable pages) on the disk. DKGood flags all of the pages on the disk as
good. Then, DKBad is used to flag pages that have been determined to be bad.

6.7.3.1 Gapponents of the Logical Disk Subsystem

The Logical Disk Subsystem consists of a single Manager process, and three main data structures,
which are shown in Figure 6-27. The Logical Disk Manager (LDM) process accepts all operations for
the subsystem, executes them, and returns the resuits. The three data structures it uses are:
(1)Sorted Page List, (2)Data Buffer, and (3)Page Allocation Map buffer.

Accept
DK : Reply
Operations Results

(pagelD. npages, huffer)

Logical

Disk
Manager . Page Page

Page
! k
I/G Cantro?
1/0 wait
~,

- Sorted Page Data Buffer Page Allocation

List Map Buffer

Figure 6-27: Components of the Logical Disk Subsystem

The purpose of the Sarted Page List is to order the disk pages to be read or written, so 43 to recuce
disk head movement, and improve disk performance. Each entry of the Soried Page List consists of
three values: the logical page D of the starting page, the number of pages (npages) to be read or
written in one disk operation, and the location within the kerne! buffer to be used for the cperation.
The Logical Disk Subsystem allows multiple page read and write operations. The pagelist provided is
clustered (if possible) and then entered in the Sorted Page List.

The Data Buffer provided is used only for remote operations (invoked from other nodes in the
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distributed system). For example, data read from the disk (for a remote operation) is first placed in the
Data Buffer, and then transferred to the destination buffer on the remote node, by using the system
copy facility. A "double buffering” technique is used, so that the disk transfer and copy operations

can proceed in parallel.

The Page Allocation Map Buffer is used to buffer some of the pages of the Page Allocation Map.
Whenever the Page Allocation Map has to be read or modified (such as in DKAllocate, DKFree,
DKMark, and DKUnmark), the relevant pages of the map are first read into the buffer (unless they are
already buffered). A detailed description of the Page Allocation Map and its handling is provided in
Section 6.7.3.3.

6.7.3.2 Disk Layout

A logical disk is laid out as a sequence of pages, which are numbered from 0 to N-1, where N is the
total number of pages cn the logical di.sk. The logical page number specified in the logical disk
operaticns consists of the concatenation of a flags byte, with a number from 0 to N-1. A page can
either be NORMAL or DUAL. A NORMAL page is a single disk page, referred by a logical page
number. A DUAL page consists of two pages, where the second page s located a fixed offset from
the first (primary) page. The DUAL page is referred to by the logical page number of the primary
page. The first bit in the flags byte (of the iogical page number) indicates whether a page is NORMAL
or DUAL. The two physical pages of a DUAL page have a gap of one page (pages are not adjacent),
~ to reduce the probabiiity of both pages being damaged by a single disk fault, and to ensure

reasonably efficient sequential access.

Logical page 0O of the disk serves a special function. [t contains information about the logical disk,
and pointers to all important data structures saved on the disk. Thus, it saves information about the
disk drive characteristics, the logical disk name, the logical disk size, and pointers to the Page
Ailocation Map, the Bad Page Table, the File System Cirectory, and 50 on. For reliability, page 0 is a
CUAL page.

6.7.3.3 Disk Page Allocation

The Page Allocation Map is a bit map, which has one bit corresponding to each page on the lcgical
disk. If a disk page has been allocated, its bit in the allocation map is set. The Page Allccation Map
itself is saved near the middle of the disl. to provide efficient access. All pages of the allocation map

are DUAL. and laid out as shown in Figure 6-28.4°

4 . .
95' ~e hayse 3 S00 MB logical disk, ot waould contun 250K pages of size 2K, The size of the allocation duap wuald be 90

bits. ar 16 DUAL pages (32 lcgical disk pages) apiroximately
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Figure 6-28: Layout of the Page Allocation Map

The page allocation algorithm used is fairly simple. It attempts to pack the allocated pages, starting
at page 1 of the disk, and continuing through to page N-1. If the last page allocated was page /, the
following allocation will start from page i+ 7 (unless a preferred allocation page is specified). The
advantage of this scheme is that allocation and deallocation are very efficient. For allocation, the
page of the allocation bitmap containing bit i + 7 is likely to already be buffered, since that page was
probably used recently (for the previous allocation operation). Hence, no disk reads will usually be
required for allocation. For deallocation, the appropriate allocation map page can be easily
determined. then read in (if necessary), and modified. Note that with this allocation scheme,
successively allocated pages will tend to be located close together on disk, thus improving access

efficienc:y.50

6.7.3.4 8ad Page Handling
One of the functions of logical disk management is to prevent the use of bad pages on the disk. A
list, called the Bad Page List, is maintained near the end of the disk, and consists of the logical page

numbers of all known, unusable (bad) pages.51 The Bad Page List is stored as CUAL pages. When

b

he

—

age Allocation Map is initialized (using DKUnmark), all the bad pages are marked a3 allccated, to

prevent further usage cf these pages.

The Bad Page List is usually constructed when a new disk is initialized, and 1s not expected to

soThus. allccation scheme wiil be able to cluster muitiple page atlocations reascnably well ‘when the disk s new, but the disk
mll slowly become more and Mare fragmented vith continued use. Some mprovements could Be m.de. to reguce the amount
st tragmentanon, of itis tound to have a significart s;mpact on performance

51The entries in the Bad Pane List are sarted ~hen the list is first constructed. but new entries are simply ndded 0 tha end cf
the it as found. The Bay Puqge Listis exoectled to require anly J few disk panges for storane
each) of 3 550 MB sk are bad. the Bad Blnck Lt aoutd have 2517 entnies. Guven hat cach ealry S 4 by,
pages (10 disk paNes) are reuncd 1 5ave *hi entre List.

Hors of the gagen Do oKD
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change very much after that. When the Bad Page List is constructed, the Data Buffer can be used for
buffering it. The List will be constructed by a special utility, which first calls DKGood to remove the
old Bad Page List (if it exists). After that, the entire disk is scanned to find any bad pages. This is
done by writing each page and then reading it back. For each bad page found, its logical page ID is
entered in the Bad Page List (with DKBad). Once the system is in operation, if a bad page is
discovered by some subsystem, it can call DKBad to enter the page in the Bad Page List.

6.7.4 Restart/Recontiguration Subsystem

The Page Set Restart/Reconfiguration Subsystem (PSR Subsystem) performs several functions
related to the restart of a computation node tollowing a crash, as well as the mounting and
unmounting of logical disks. A single instance of this subsystem resides at each node in the system.
The PSR subsystem "bootstraps” the entire Page Set Subsystem at restart time. After a crash, the
Restart/Reconfiguration Subsystem is restarted automatically, and is responsible for constructing the
entire Page Set Subsystem. The kernel (on a node) maintains a list of device addresses which it
probes, to determine the iogical disks on its own computing node. The PSR Subsystem sets up the
atomic and standard page set arobjects, as well as the logical device arobject, for each logical disk

found nn the node.

In addition to restarting the Page Set Subsystem, the PSR Subsystem adds and remaves logical
disks dynamicaily (while the system is running) as necessary. When a new logical disk is added, the
various Page Set Subsystem arobjects (Standard Page Set, Atomic Page Set, and Logical Disk) have
to b2 created for it. When a disk is removed, the corresponding arobjects have to be killed. Some
support is provided for the clean unmounting of disks. It is possible to quieten activity on a disk (by

ailowing old activity to complete, but refusing new activity), prior to disk removal.

The PSR Subsystem maintains a global Mount Table, which indicates the location (node; of all the
logical disks in the entire distributed system, and the Page Set Subsystem Arobjects asscciated with
each logical disk. Each instance of the PSR Subsystem maintains a copy of the Mcunt Takie, and the
peers co-operate in keeping up-to-date versions of the table. The Mount Table at a node is glcbally
accessible to other kernel level subsystems on that node. Along with the globa! Mount Table, a local
Unmount Table is also maintained. The Unmount Table lists the logical disks accessibie to the PSR
Subsystem, but not globally visible to other subsystems on its node, or to other nodes in the

cistributed system.

The PSR Subsystem perfarms two other usetul functions. Firstly, it co-ordinates qgarbaqe collzction

for the entire Page Set Subsystem (on 1 node). Secondly. it checks any given diuk for bad {unus.abile)
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pages. and enters them in a Bad Page List (refer Section 6.7.3). Each of these two functions can be

performed at restart, as well as when the system is running.

PSRQuiet \"SRUnmount

/ PSRUAMOUN T \/ PSRRemoveD sk
/-\ /—\
Mounted . Removed
PSRMount PSRIni<Davice

Figure 6-29: State Diagram for Logical Disks

The PSR Subsystem allows a logical disk to be in one of four possible states: Mounted, Unmounted,

Quiet, or Removed (refer Figure 6-29). In the Mounted state, the logical disk has an entry in the Mount

Table, and is globally visicle on its own node, as well as throughout the system. All types of disk

operations (except disk checking and garbage collection), such as paging, reading and writing, are

permitted in this state. The Quiet state is very similar to the Mounted state in having an entry in the

Mount Table, and being globally visible. The only difference is that this state represents an attempt to

quiet down system activity prior to disk removal, and hence new activity is not allowed.

In the

Unmounted state, the loqgical disk has an entry oniy in the Unmount Tavie, and 15 nsitie within the

PSR Subsystern. The main purpose of this state is to allew disk checking, garbege <cllection, and

other disk maintenance to be performed, while the rest of the system s still up and running. The

Removed state corresponds to the physical removal of the disk from the computer system.
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val = PSRRestart{device-list [, options])
diskid = PSRInitDevice(dev-name [, imtflags])
val = PSRRemoveDisk(diskid)

val = PSRMount(diskid)

val = PSRUnPmount(diskid)

val = PSRQuiet(diskid)

val = PSRCheckDisk(diskid)
val = PSRGarbageCaollect(diskid)

val = PSRinsertMount(diskid, node, disk-aid, ps-aid, aps-aid, mtflags)
val = PSRRemoveMount(diskid)
val = PSRRequestMount(mount-tabie)

BOOQLEAN val TRUE if the specified operation is done successfully; otherwise FALSE.
DISKID diskid The Logical Disk ID of the disk volume being operated on.

DEVLIST device-list
. The *of logical device names corresponding to logical diss in the system.

PSROPTIONS options
A set of boolean flags which can be specified as restart aptions for operations to
be carried out in the restart sequence. The flags provided are: GARBAGE-
COLLECT, and CHECKDISK.

QEVNAME dev-name
The logical device name.

PSRINITFLAGS initflags
A set of boolean flags which can be specified when a logical disk is initinlized.
Currently, two flags are provided: READ-ONLY, and SELF-CONTAINED.

NODEMANME node The ID of the node on which the disk is mounted.

AID disk-aid The arobject ID for the Logical Disk Subsystem Arobject corresponding to the
disk diskid.
AID ps-aid The arobject ID for the Standard Page Set Subsystem Arobject corresponding to

the disk diskid.

A'D aps-aid The arobject D for the Atomic Page Set Subsystem Arobject carresponding to
the disk diskid.

PSRMCUMNTFLAGS mtflags
A set of boolean Hays associated with each 2ntry in the Mount Table Tha tHags
provided are: QUIET, READ-GiiL 7. GELF-CONTAINED.
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MOUNTBUFFER *mount-table
The buffer used for transferring the contents of the mount table between different
nodes in the system.

The PSRRestart primitive restarts the Page Set Subsystem on a given node, following a node crash.
it is invoked by a kernel process responsible for bringing up the entire kernel on that node. The list of
devices corresponding tc-) all logical disks on the node is determined by the kernel process, and
supplied as a PSARestart parameter. For each logical disk on the node, the PSRRestart primitive
creates and restarts three page set subsystem arobiects (standard page set, atomic page set, and
logical disk). In addition, if the GARBAGE-COLLECT and/or CHECKDISK options are specified, then
garbage cotlec'tion and/or disk checking (for bad pages) are performed as part of the page set restart
sequence.

The FSRInitDevice primitive adds a new logical disk to the nade. The state of the logical disk makes
a trasition from the Removed state to the Unmounted state. The system device name (dev-name) for
the logical disk is supplied, and its*logical ID is found (from page O of the disk) and returned. The
Stancard Page Set, Atomic Page Set, and Lcgical Disk arobjects are created for the newly added
disk. Cptional flags (READ-ONLY, and SELF-CONTAINED) can be specified as necessary, for
restricting the type ot disk access permitted. The READ-ONLY flag specifies that the entire disk is
read-only, and its contents cannot be modified. The SELF-CONTAINED flag specifies that all files
saved ¢n that disk must have the directory entries, as well as the file contents (page sets) saved on
that cisk.>2 The PSRRemoveDisk primitive removes a specified unmounted logical disk from the

system. The three page set arobjects for the logical disk are destroyed.

The PSAMount primitive mounts the specified unmounted logical disk, and makes it globally
accescible. All nodes in the distributed system are informed about the new!ly mounted disk. The
PSRUnmeunt pnmitive unmounts the specified logical disk, from the Mcunted or Quiet state. In »ither
case. ‘he result of 2 PSRUnmount is seen by the rest of the system as a disk crash. where no turther
operations are permitted, and ongoing operations cannot e <:ompleted.53 It is expected. however,
that if the disk was quiet prior to unmounting, there would be very little (if any) ongoing activity at this

time. The PSRQuiet primtive flags a mounted logical disk as being in a special quiet state, in which

52

't 3 sk g self contained, it can be easily mceved from one AirchOS system, and imihahized on ancther
LS , .
PLAUrrount can e implemented as the estruction of the *hree paqe sot Grobjects (Standaid e sel stomic e et
e e followed By the crection of new page et arghiec!s Inthis cnse, Ml reque 5 G ey ath he s page

cot wageat i\Us mll return errgr mchic2hionsg
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ongoing activity can be continued, but new activity is not allowed. The main prupose of this primitive

is to allow for clean disk unmounting.

The PSRCheckDisk and PSRGarbageCollect primitives are ailowed only when the specified logical
disk is in the Unmounted state. The PSRCheckDisk primitive determines the bad pages on the
specified disk (non-destructively), and constructs the Bad Page List. The PSRGarbageCollect
primitive co-ordinates garbage collection for the specified disk, by invoking garbage col'ection

primitives provided by the standard page set, atomic page set, and logical disk arobjects.

The Mount Table is replicated on all nodes in the distributed system. Three primitives are provided,
which are used only by peer Restart/Reconliyuration arobjects on other nodes, for obtaining and
updating information from the Mount Table. The PSRInsertMount primitive is used for adding a new
Mount Table entry, or for modifying an existing entry. The parameters specified are the logical disk ID
(diskid), the ID of the node on which the disk is mounted (node), the I1Ds of the three Page Set
Subsystem arobjects: logical disk subsystem (disk-aid), standard page set (ps-aid), and atomic page
set (aps-aid), and a setof flags. The PSRRemoveMount primitive removes the Mount Table entry for
the logical disk. Finally, the PSRRequestMount primitive returns the contents of the entire Mount
Table in the buffer provided. This primitive is primarily invoked by a peer PSR arobject which is

restarting after a crash, and attempting to reconstuct its copy of the system-wide Mount Table.

6.7.4.1 Components of the Restart/Reconfiguration Subsystem
The PSR Subsystem consists of four types of components: (1)the Mount Table. (2jthe Unmount
Table. {3)the PSR Manager process, and (4)one or more PSR Worker processes. Each of these

components is briefly described beiow, and shown in Figure 6-30.

The Mount Table provides information about the location of all (mounted and ,uiet) logical disks in
the entire distributed system, and the archiects which are responsible for managing *hese disks. A
conpy of the Mount Table is maintained at each node in the system. The Mount Table is glotaily visible
to all subsystems on a node (and to other nodes), but 1s updated only by the PSR Subsystem. Curing
updates, the table is locked, to prevent the access of inconsistent states of the table. Each entry ot
the Mount Table contains the following items of information: the ID of the logical (mcunted or quiet
disk, the ID of the node on which it is mounted, the ID of the Lcgical Disk Subsystem archiject for that
disk. the ID of the Standard Puage Set arubiject for that dick, the ID of the Atomic Page St Arobyect tor
that disk and a set of flags (QUIET, READ-ONLY, and SELF-CONTAINED) The QUIET "aqgs the only
way of specifying whether a logical disk is in the mournteag state, or in the Juret state. The READ-
CNLY and SELF-CONTAINED Hags specify particular types of disk usage, and hus Ecen discussed n

the previous section.
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Figure 6-30: Components of the Restart/Reconfiguration Subsystem

The Unmount Table provides information about unmounted logical disks, which can be accessed by
the PSR Subsystem, but are not visible to the rest of the system. It is useful to be able tc access disks
in this mode, primarily for maintenance purposes, such as disk checking and garbage collection. The
entries in ihe Unmount Table are very similar to those in the Mount Tabie, excapt that the D of the
ncde i3 not reguired, since the Unmcunt Table refers cnly to its local node. In the flags tield. the

QUIET flag is not required for this table.

The PSR Manager process is responsible for providing most of the functionality of the PSR
Subsystem. It accepts all PSR operations, and returns the resuits. it also manages the Mount and.the
Unmount tables. The PSR Worker procaesses serve two functions. They implement PSRCHec.Disk
and PSRGarbageCoilect operations on behalf of the Manager. Since both these nperations can
potentially take a very long time, the PSR Subsystem can still be used for performing aperatians ¢n

other disks concurrently. The other function of the Worker process i1s to watt on betialf of the
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Manager process, when peer level operations are invoked by the Manager. This prevents deadlocks
arising from multiple, concurrent peer operations.f’" One Worker process is always present in the
PSR Subsystem for invoking peer PSR operations (PSRinsertMount, PSRRemoveMount, and
PSRRequestMount). For each PSAcheckDisk or PSARGarbageCollect operation, a new Worker

process s created, and then destroyed when the operation is completed.

6.7.4.2 Restart

The PSR Subsystem performs two related functions when restarting after a node crash. The Mount
Table has to be recreated, and the Page Set Subsystem has to be brought up. The reconstruction of
the Mcunt Table is quite similar to the reconstruction of the Directory Map Table, when the Directory
Map Subsystem of the File System is restarted (refer Section 6.6.3). The PSR Manager process
invokes a Worker process to obtain the Mount Table (with PSRRequestiount) from one of the other
nodes in the system. In the meantime, it proceeds to initialize all the logical disks on its own node,
which have been found by the kernel restart process. It determines the IDs of the logica! dicsks. and

mounts them.

For each logical disk on the node, its ID is first determined, and an entry_made in the Unmount
Tacie. Next, a Logical Disk Subsystem arobject is created for that disk, and then restarted. As a
result cf the Disk Subsystem restart, all the logical disk data structures are recovered (page Q of the
disk. the allocation map, and the bad page list). Once this operation has completed, the standard
page set arobject is created and restarted, so that the Page Set B-tree is recovered correctly. Next,
the atomic page set arobject is created and restarted. This allows all its data structures to be
recovered. and all committed transactions to be completed. The IDs for the three newly created
archjects are entered in the Unmourt Table. Next, the logical disk is mounted. and enterad in the
Mourt Table. Once all the logical disks are thus mounted, all the peer PSR arobjects are toid to

update their Mount Tabtles, using the PSRInsertMount primitive.

It the cisk checking and garbage coilection options are specified. then these operatians oo have
to ke performed as part of the restart sequence. Garbage collection is a good «dea after a restart. so

that all temporary page sets can be flushed.

ot . .
“sinte tre sinnianty ath the nandhng ct the Directory Map Table in the Fde Subuysteman Sectan 55 3
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6.7.4.3 Garbage Collection and Disk Checking

The PSR Subsystem co-ordinates garbage collection for the Page Set Subsystem. It first calls on
the DKUnmark pnimitive, so that the Logical Disk Subsystem marks the entire allocation map as being
free. Next. it calls the PSGarbayeCoilect pnmitive, which specifies all the pages being used by the
Standard Page Set Subsystem. Following that, the APSGarbageCollect primitive is invoked, which
marks all the disk pages in use by the Atomic Page Set Subsystem. As a resuit of this garbage
collection procecure. all temporary page sets. as well as pages not in use by the Page Set Subsystem

<5
are freed.

Disk checxing Jdetermines all .: unusatle (bad) pages on the specified cisk in a non-destructive
manner F'rst the 2/ So3ag primoave s called to remove the old Bad Page List, thereby marking all
disk pages as 'good” Then e ch page on tme disk s read. If there is no checksum error in reading,
then the page s usable If thar:- s an error. the page s written into, and then read again. If the error
persists. then the page number s entered n the Bad Page List. All the pages of the disk are checked

n th:s way.

6.81/0 Device Subsystem

An /O device 1S tredated as a special type of file where no transaction is allowed and a device
specific control scheme is included. To read. write or issue a special command such as reset, a
device must be opened before any read/write access and it has to be closed after ail of the actions

are completed.

Al cf the device dependent commands can be sent to devices by Lsing the Setloct! primitive.,

dd = OpenDevice(devicename, mode)
CloseDevice(dd)

nr = ReadDevice(dd, buf nbytes)
nw = WriteDevice(dd. buf, nbytes)

event-cnt = lowait(dev-descriptor, timeout)

e val = Setlocti(dev-descriptor, io-command, dev-buf, timeout)

¢
3
E t s sl gonsible tor unreterenced files to Axist. since thug qarbrge collechon procedure 1o not canceorr Lubsystems,

nove tha Page Let Subsystem
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It should be noted that the current I/O system does not interact with the transaction manager at all.

Thus, any type of transaction facility is provided.

6.8.0.1 Policy Management

The policy management provides system functions to add, delete, and modify the policy definition
module in ArchOS. Since the placement of the policy definition module is a major issue in terms of
the system performance, ArchOS allows a client to specify the location by using a policy definition
descriptor. The policy definition module consists of a policy body and a set of policy attributes. Both

the policy body and attributes can be modified at runtime.

pdd = AllocatePDDY)
val = FreePDD(pdd)

1]

val = SetPolicy(policy-name, policy-def-desc)
val = SetAttribute(policy-name, attribute-name. attribute-value)

An AllocatePDD primitive allocates a policy definition descriptar in the kernel and FreePDD releases
the allccated descriptor. A SetPolicy primitive links a user-defined pclicy definition module to

ArchQS. A SetAttribute primitive set a specific value(s) for its one of attribute.

6.9 Time-Driven Scheduler Subsystem

Process scheduling in a real-time facllity is crucial to the success of the system. Process
scheduling in ArchOS differs fundamentally from scheduling on other operating systems because of

several critical factors:

e ArchOS is a real-time system; hence process scheduling must be compatinle with its
critical goal of supporting application-defined time constraints

e ArchOS design manages application time-constraints by explic:tiy accounting for the fact
that there is a definable time-varying value to the system for completing each process at a
particular time.

6.9.1 Best-Effort Scheduling

6.9.1.1 Value Function Processing
The ArchOS schedtler, part of the ArchOS Kernel Arobject (see Section 8. 3.1 deaugned to explicitly
use the application defined value function for the set of processes in ils gueue N making a “"best

effort” decision on the process to be executed at each pointin time.
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The computational model for this scheduler consists of a set of schedulable processes P, residentin
a processor. Each such process has a request time Ri. an estimated computation interval Ci and a
value function Vi(t), where t is a time for which the value is to be determined. Figure 6-31 illustrates
these process attributes for a process with a linearly decreasing value function prior to a critical time
D., and an exponential value decay following the critical time. The illustration depicts a process which
is dispatched after its rgquest time and which completes prior to its critical time without being

preempted.

<

N

time —>

R, D,

Figure 6-31: Process Model Attributes for Process i

Vi(t) defines the value to the system due to completing P, at time t. The set of these value functions
is used by the scheduler to determine the best sequence in which to schedule each of the available
processes. The type of functions definabie for Vi will determine the range of scheduling policies
supportable by the operating system, particularty with respect to the handling of a processor overload

in which some critical times cannot be met.

We note that the :xistence and importance of the deadline is dependent on the value function. The
value function can be said to define an explicit deadline only if it has a discontinuity in the function, its
first derivative, or its second derivative, in which the value is lower or decreasing aftér the
discontinuity. In Figure 6-31, the deadline is defined by the discontinuity in its first derivative at the
critical ime O.. _

*
At any particular pc;int in time, there will be n processes ready for scheduling, resulting in n!

possible scheduling sequences. Each of these sequences consists of a process orduring




226

{m_, - - .mn), where P wouid be the j"‘ process to be scheduled. A scheduling sequence will be

1
considered optimal if, w]ith respect to the available information at the time of the scheduling decision,
B is maximized, where =3 V[,(T,) and Ti is the actual completion time of of using this scheduling
sequence (i.e., il P, is the ‘-m process to be scheduled, then T‘: Zi=1ka). See Figure 6-32 for an
example of four processes with value functions, for which the choice of a best effort schedule is
non-trivial. The figure shows the four value functions, and a potential scheduling sequence such that

each completes with a high value. -

/
\")
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Figure 6-32: Four "Typical" Processes with their Value Functions

Since the completion times used for this scheduler will be known only stochastically, the assumed
distribution and its computed parameters (e.g., mean, variance) will be used to compute its expected
value in the scheduling sequence, resulting in a statistically "good" sequence. Making an optimum
scheduie can be sirown o be computationally intractable, so the best-effort scheduler will use a sat ¢f
heunistics to determine a sequcnce which will generate a high total value over any time pariod which

is sufficiently long with respect to the completion times of the processes to be scheduled.

6.9.1.2 Well-Known Scheduling Algorithms

Scheduling a set of processes consists of producing a sequence of processes on one or more
processors such that the utilization of resources optimizes some scheduling criterion. Criteria which
have historically been used to generate process schedules includes maximizing process flow (i.e.,
minimizing the elapsed time for the entire sequence), or minimizing the maximum lateness (lateness is

detined to be the difference between the time a process is completed and its deadline). It has long
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been known [Conway 67] that there are simple algorithms which will optimize certain such criteria
under certain conditions, but algorithms optimizing most of the interesting scheduling criteria are
known to be NP-complete {Garey 79}, indicating that there is no known efficient algorithm which can
produce an optimum sequence. Clearly, the choice of metric is crucial to the generation of a
processing sequence which will meet the goals of the system for which the schedule is being

prepared.

There are several well-known scheduling algorithms which have traditionally been used in process

scheduling, each with properties which make it useful for certain applications. Among these are:

1. SPT. At each decision point, the process with the shortest estimated completion time is
executed. This algorithm maximizes overall throughput, and is frequently used (althoughn
in modified form) in batch systems.

2. Deadline. At each decision point, the process with the earliest deadline is executed.
This algorithm, in the absence of an overload, will resuit in meeting all deadlines. More
precisely, this algorithm will minimize the maximum lateness.

3. Slack. At eash decision point, the process with the smallest estimated slack time
(efapsed time to the critical time minus its estimated completion time} is executed. This
algorithm, in the absence of an overload, will also result in meeting all deadlines, but will
produce a much higher level of preemptions. This algorithm will maximize the minimum
lateness.

4. FIFO. At each decision point, the process which has been in the request set longest is
executed. This algorithm will produce a relatively "fair" schedule, in which lateness will
be spread out to all processes.

5. Priority. At each decision point, the process with the highest fixed priority is executed.
The "most important” process is executing at any moment.

Of these. real-time systems traditionaily use only the Priority and/or FIFO schedulers. It should be
noted that no objective perfocrmance measures (e.g., mesting deadlines, high throughput, low
lateness or *ardiness) are aven approximately optimized by these algorithms, but they are inexpensive

to implement and require very few run-time resources.

In priority-driven scheduler systems, deadline management is attempted by assigning a high fixed
priority 1o processes with "important” deadlines, disregarding the resulting impact to less
"important” deadlines. During the testing neriod, these priorities are (usuaily manually) adjusted until
the system implementer is convinced that the system "works". This approach can work only for
relatively simple systems, since the fixed priorities do not reflect any time-varying value of the

comgputations with respect to the problem being solved. nor do they reflect fact that there are many
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schedulable sets of process deadlines which cannot be met with fixed priorities. In addition,
implementers of such systems find that it is extremely difficult to determine reasonable priorities,
since, typically, each individual subsystem implementer feels that his or her program is of high
importance to the system. This problem is usually "solved” by deferring final priority determination to
the system test phase of implementation, so the resuiting performance problems remain hidden until it

is too late to consider the most effective design solutions.

Using a deadline scheduler(i.e., a scheduler which schedules the process with the closest deadline
first [Liu 73]) solves the problem of missing otherwise schedulable deadlines due to the imposition of
fixed priorities, but leaves other problems, most notably the problem of the transient overload. The
deadline scheduler provides no reasonable control of the choice of which deadlines must be delayed
in an overload, leading to unpredictable failures and resuiting in an impact on reliability and

maintainability.

6.9.1.3 A Best-Effort Scheduling Algorithm

The creation of a best-effort scheduling algorithm is one of the key research interests of the
Archons project, and work on it is currently underway at this writing. However, there are some
preliminary results which have been produced, and which will be used, at least in our initial scheduler
design. In this initial algorithm, we take advantage of several observed value function and scheduling

characteristics:

® Given a set of processes with deadlines which can all be met based on the sequence of
the deadlines and the computation times of the processes, it can ve shown that a
schedule in which the process with the earliest deadline is scheduied first (i.e., a Deadline
schedule) will always result in meeting ail deadiines.

o Given a set of processes (ignoring deadlines) with known values for completing them, it
can be shown that a schedule in which the process with the highest vaiue density (V/C, in
which V) is its value and C) is its processing time) is processed first will produce a total
vaiue at any period of time no lower than any vther scheduie.

¢ Most value functions of interest (at least among those investigated at this time) have their
highest value occurring immediately prior to the critical time,

Some of the implications of these observations are:

e |f no overload occurs, all deadlines will be met, and the value function produced by the
deadline schedule will be as high as possible.

¢ if an overioad occurs, and some processes must miss their deadlines, the Value Density
Schedule weuld produce a high value.

e Therefore, it we can predict the probability of an overload, we can choo<a processes with




229

low value dansity as candidates for being removed from a deadline schedule, until a
deadline schedule is produced which has an acceptably low probability of producing an
overload.

The algorithm we will use, then, will start with a deadline-ordered sequence of the available
processes, which will be sequentially checked for its probability of overload. At any point in the
sequence in which the overload probability passes a preset point, the process prior to the overload
with the lowest value density will be removed from the sequence, repeating until the overload

probability is acceptable.

6.9.2 Time Management

The ArchOS scheduler will use information provided by the time management primitives to make its

scheduiing decisions. This information is derived from these primitives:

rnc = GetRealTime()
Timedate(time, date)

TimeDate
TimeDate

Delay(deltime, criticaltime, comptime, setflag)
Alarm(alarmtime, criticaltime, comptime, setflag)

val = SetTimeDate(time, date)

In addition to these primitives, policy directives will be used which are provided by the Policy
module (see Section 4.2.6).

The information needed for making the scheduling decisions includes:

1. The request time. This is the time a process becomes available for execution, aithough
its value function may be negative, forcing the scheduler to delay it until it can be
completed with as high a positive value as possibie. iis vaiue funciuun s defined vy the
nrocess itself using the delay or alarm primitives.

2. The critical time. This time is the time relative to the request time for the process at
which the value function may have a discontinuity, and is determined when the process
was requested. Its value relative to the request time is set by the process itself using the
delay or alarm primitives.

3. The value function parameters themseives. The value function is divided into two
parts: (1) the value for complating the process prior to its critical tma, and (2) the value
for completing the process after its critical time. In each of these functions, the time used
in computing the function is relative ta the critical time. o the value function used prior to
the critical time measures its time "backwards"”. Each function has the formn: 11 =
K, +K2t.K3t2+Kde'K5’) so there are ten parameters defining the total value function.
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Value function parameters are defined by the application programmer. but are modified
by the system palicy currently in effect. In the case of processes (i e.. server processes)
scheduled on behalf of other processes (i.e., client processes). the value function can. at
the option of the process, use either the value function of its client or its own value
function.

4. System policy. The system policy is set by the policy module, and consists of a set of
specific policy choices (e.q., abort processes whose value functions have fallen below
zero) as well as two parameters for each process n the system. The values are K and
Kb, and are used to makeé a linear transformation to the application-detined vaiue
function: V(¢ = Ka + KbV(t)) Itis v'(t) which is actually used to perform the value function
scheduling computation.

6.9.3 Short-term vs. Long-term Scheduling

Using the aigorithm described above in subsection 6.9.1.3, these decisions will result in a long term
high value as long as an overload condition is not maintained for a significant period of time. A
criticai part of the scheduling algorithm wiil be the computation of the probability that an overload
condition, other than a transient overload, has occurred or is about to occur, which will result in
making a decision about long-term reconfiguraticn across the system node boundaries. In addition to
decisions about reconfiguration, decisions with respect to process abortion, preemption, and process

scheduling in support of client processes outside the node will be iade by the scheduling aigorithm.

ArchQS will use a three phased approach to handling the inter-node scheduling control decisions.
including reconfiguration decisions as well as decisions about scheduling processes invoked across
node boundaries in support of comman tasks, 2nd including such decisions as when a process

should be moved and the decision of the best destination to which it shouid be moved.

1. Purely local information will be utilized. This means that the attributes of the functions
resident on the node will be used, but no inter-ncde coordination of process scheduling
will take place. Decisions by processes in one arobject to request services in another
arcbject (either tocal or remote) will be made unilaterally by the requesting node.

2. Primarily local information will be ctilized, augmentcd with value functicn and critical time
information from the clients of the processes being scheduled. [n this way, scheduling by
one node on behalf of ancther node will be suppartive of the needs of the client node as
far as possible, but no coordination of, for example, two server nodes in support ¢f a third
client node will be performed. Thus, it is passible (but hopefuily uniikely) that in a heavily
loaded environment two such server nodes could abort processes on behalf of clients in
such a way that no client gets adequately served, even though work i1s being performed

on its behalf.

3. Local information will be augmented by some form of negotiation among <-hedubng
rcutines to ensure that work on behalf of remaote client processes i1s coordinatd, and,
abortion is necessary, a best-effort 15 made to do it in a way which maxunizes the total

system value. .
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6.10 Time-Driven Virtual Memory Subsystem

The Time-Driven Virtual Memory (TDVM) Subsystem is responsibie for managing the primary
memory page frames. It allocates those page frames among the mgest critical processes, as
dynamically determined by the Time-Driven Scheduler (TDS) Subsystem. The basic goal of the TDS
and TDVM Subsystems is to ensure that the required CPU time and primary memory space resources
are both ava.able when needed, in order to complete critical tasks within their deadlines.
Furthermore, when it becomes necessary to miss some deadlines due to overioad situations, TDS and
TOVM attempt to allocate the oversubscribed resources to the most impartant processes. so as to

maximize the total value of the tasks compieted (see Section TDSSEC).

The basic goal of the TDVM Subsystem differs substantially from that of a general purpose time-
sharing system’s virtual memory manager. Aithough there are many theoretical results and a great
deal of practical experience in designing virtual memory systems for general purpose computing .
environments, it is unclear how much of this work can be applied in the real-ime (or time-driven)
environment of ArchOS. Indeed, very few real-time systems to date have supported virtual memory
facilities, since it is very difficult to provide real-time guarantees in the face of unexpected paging
activity. Thus, the design of the ArchOS TDVM Subsystem, as outlined in this Section, can only be
regarded as 4 preliminary version. It provides the required functionality, but maiiy of the polic.es and
design decisigns are based on little or no supporting data or theory. This area cf the ArchOS design

will be one of the important focus points for further study. experimentation, and development.

6.10.1 Memory Management Policies and Techniques

In crcer to manage the primary memaory (space) resources in a time-driven fashion, consistent with
the management of the CPU (time) resources, the TDVM Subsystem uses the “vorking set model’ as
the basis for its management policies and techniques. The working set :nodel for memory
management was first descrived by Denming [Denning £8&], and 1t hias teen the focus of a4 yreat deal of
subsequ=nt research [BDenming 80]. The working st of a process is defined as the set of its vir- al
memaory pages which irave been accessed within the last W units of CPU (virtual) time. Note that
working sets are defined on a per-process basis. and are determined with respect to the per-process
virtual times. The goal of a working set memory manager is to ensure that the complete working set
for each active process g resident in primary memory. If there are too many active processes. some
wilt have to he swapped out to secondiary memory (and thus become inactive), to ensure that all of the
remaining vorking sets vl it within primary memaory. This quarantees that the active proce:sses il

axecutn efficiently, vith 0 mimmum number of page faults (i e. "thrashing' 15 avoided).
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Since a working set memory manager determines which pages are 1o be resident in primary memory
on a per-process basis, it is called a "‘local’” memory management technigue. This s in contrast to
“global" techniques, which are only concerned with the rea/ time since a page was tast accessed,
regardless of which process it belongs to. For the purposes of tme-drniven wvirtual memory
management, a local technique is expected to be much more effective in allocating the primary
memory resources to the most important processes. This 1s because it can account for varniations in
the urgency of processes, based on their deadlines and the penalties for missing them, and ensure

that the most urgent processes have their working sets completely resident.

A key factor affecting the operation of a working set memory manager is the choice of W, the
working set parameter or working set window size. In traditional time-sharing environments, #t has
been found that using a single value of W, the same for all processes. works almost as effectively as
selecting the window size on a per-process basis. Also, the overall paging behavior cf the system ‘s
not very sensitive to smal! changes in W, aithough W must be tuned somewhat to yie:d performance
that is close to optimum.%The situation in a time-driven environment is somewhat different, since the
goal is to ensure that deadlines, especially all of the more important deadlines, are met, and there is
much less concern with overall system throughput. In this case it could be beneficial to vary the
working set window sizes, depending on the criticality of the individual processes. Furthermore,
since tha criticality of a process can vary with time, it may be useful to dynamically vary its window

siz2 as well.

Since the value of W depends upon the criticality of the individual process (how near it is to its
deadline. and the penalty for missing it), only the TDS Subsystem is in a positicn to specity the varying
window sizes. Only a few, discrete window sizes, corresponding to multiples of some standard
window size, w, should actually be needed. An adequate set of sizes might be {w, 2w, 4w. ..., 128w}.
Note that w is a glcbal system tuning parameter, corresponding to the single ‘window size of a
stancard. time-sharing, working set memory manager. TDS informs TOVM of the varicus working set
wvindow sizes at the same time it provides TDVM with the ordered list of runnable processes, 1.e. as a

result of cailing the Schedule primitive (see Section TDSKERSEC].

For the case of time-sharing working set memory managers, it has been found that maintaining just

the working set sizes (number of pages) across process swaps. without recording the mdividual

[
,8, & 3100 small excessive paqing wvill occur, becduse it will not caplure the “natural” w~vorking sets for mary praocesses.

Cn the sther hand. W s 00 large. excessive swapning wall occur. Thes is because the working cets will bo liracr. ddue to
p4ges faking longer ta pass out of the wvorking set windaw, and fewer working cets can then be HEn pnmary mensory - Getting
W ortose g sptimum nvelves balancing these tan effects So a5 to maximeze overall sy<'m throughput
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pages of the working sets, still yields acdequate performance. The working set pages are simply
faulted back in on demand, after the process has been swapped back in. However, in a time-driven
system such paging behavior may not be acceptable, especially if the process is nearing its deadline.
As a resuit, TOVM will maintain the actual lists of working set pages for all processes, whether active

or swapped. This will allow the working set of a process to be efficiently reloaded at swap-in time.

The choice of which working sets should be resident in primary memory, and which should be
swapped-out, will be made by TDOVM based on the order of the processes in the scheduling list, which
is returned by the TDS Schedule (or RequestSwapList) primitive. {n general, the most urgent
processes will be at the head of the scheduling list, and TDVM will attempt to load and maintain the
working sets of as many of those processes as possible. Since it is expected that most processes will
gradually rise through the scheduling list as their deadlines approach, this technique shculd result in
the preloading of most working sets, prior to the time the associated processes have to run. if a
working set has to be swapped-out in order to make space for one that is to be swapped-in, either the
unswapped process closest to the end of the scheduling list, or the process that blocked least
recently, will be selected for swapping-out.57lf the unswapped process that blocked least recently has
been blocked for more than some threshold amount of time, it will be the one selected for swapping-

out.

For the processes which are currently active, techniques are required for determining which pages
belong to their working sets. At the time that a new process is created, there is ng executian history
available to indicate what its initial working set ought to he. In order to reduce the number of intial
page faults, and hence improve the efficiency of process 'lnading” and startup, TDVM will allow an
imitial working set to be specified. This initial working set could either be cetermined heauristicaily (for
example, x percent of the User Text and y percent of the User Data}, or it could ue based on

information obtained through previous executions of the process.

As a process runs, TDVM must dynamically adjust the process wor«ing set. to tracx the proceys
through different phases of its execution. The primary way that pages yet added to a warking set s
through page faults, i.e. as new pages are accessed they get paged-in "on demand’" !f TCVM detects
sequential paging activity in one of the data segments of a process’ address space. it can attempt 10
do sequential pre-paging. This technique can be very effective in improving the perfarmance of

sequentially accessed File Arobjects, and in many other situations as well. Tne other ~uy that page »

57 . .
The scheduling list will contain all processes which are “'sleening’” (due 1o Deray o0 Marm Lomdne s byt iny o e,

blocked tor other remsons (such as Acceot pnimitives) wil not appear n that nst.




234

can get added to a working set is if the working set window size is increased.*®When TDVM detects
an increase in the window size (by checking the value in the scheduling list, obtained through the
TDS Schedule primitive), it must scan through the “last accessed times' of all pages in the address
space. This will allow it to determine which pages should be added to the working set (paged-in), in

addition to those already there.

The removal of pages from a working set occurs when pages fall outside of the working set window.
This can happen either as a resuit of the process' virtual time advancing more than W units since one
or more of the working set pages were last accessed, or as a result of the working set window size
decreasing. A decrease in the window size is’detected in the same manner as an increase, but in this
case only the current working set pages need be scanned to determine which, if any, are to be
removed from the waorking set. Determining the last accessed times for pages of the working sct can
only be done approximately, assuming no specialized virtual memory hardware other than USED flags
is avai able. It 1s accomplished by scanning the USED flags of the working set pages every time w
units of virtual time have passed.ngor every page in which the USED flag is set, that flag is cleared
and the 'ast accessed time is updated to the current virtual time. For any page in which the USED flag
was c'ear. *he last accessed time is checked to see if it falls outside of the working set window. f so,

that page is removed from the working set.®0

One other major responsibility of the TDVM Subsystem is management of the free page frame pool.
A free page is any primary memory page which does not belong to one of the currently active working
sets. Such a page can be in any one of three different states:

1. Cn the Page-Qut List: It corresponds to an existing page in a secondary memaory page

set. cut it has been modified and hence must be written back to the page set before it can
be reused.

2. On the Reclaim List: It corresponds exactly to an existing page in a secondary memary
page set, and hence it is free to te reused without first writing it back to the page set.

3. Cn the Free List: It is completely free to be reused, since it does not correspend to any
existing page in a secondary memory page set.

58’h«s nappens when TDS determines that it has now beceme more iinportant to avord page fauits, hecause the process (s

neanng ts deacline and the penaity tor missing the deadhne i1s nigh

o
‘gpecall that . the workimg et mndow size, is some mulliple of w, the base window size.

60 . )
Note ‘h.l. in practice. ~orking set s€ans couid be imtiated 1t the time of preeessor reschoduling gearacns T2k to
Scheguie) assuming that such Jocisions occur at intervals of at most w units of real ime nahat - oe thee carrent s )y
w~verkne set necd only be scanned f the process has accumuiated 3 1east w units of wrtugi hme e a7 st nesnee |
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When a page fauit occurs, TDVM checks the Page Cut and Reclaim Lists to see f the required page
is already n primary memory, and hence can be quickly “reclaimed”. [f 50, the time and expense of
reading the page from its secondary memcory page set can be avoided. Ctherwise a free page must
be selected to hold the contents of the page as it is read from the page set. Pages are selected first
from the Free List, but if it is empty, then they will be selected from the Reclaim List. The Reclaun List
is maintained in FIFO order. so that those pages which have been free for the longest time will be
selected first for reuse. If the Reclaim List is also empty, then a page from the Page-OQut List will have
to be seiected. Of course, that page will have to first be written back to its corresponding page set,
before it can be reused. The Page-Qut List, like the Reclaim List, 1s maintained in FIFO order. so the
page that has been free the longest will be the first to be reused. In the event that no free page can be
found. i.e. the Page-Qut List is also empty, then TDVM must initiate the swapping-out of a process in

order to make some free pages available.

To help avoid the situation of having to page-out or swap-out at page fault time (i.e. to help reduce
the elapsed time for handling a page fauit), TDVM attempts to maintain a mimimum number of pages
in the Free List and Reclaim List combined. When the number of available nages in these lists drops
below a threshold (approximately five percent of the primary memory page frames), TOVM will initiate
page-out gperations in order to move some pages from the Page-Qut List to the Reclaim List. If there
are still not enough free pages available, then TDVM will initiate a swap-out operation in order to free
all of the 'vorking set pages from some process (the least urgent one). Note that checiaung the free
page threshcld and initiating page-out and swap-out operations can be done at the time of precessor

rescheduling decisions, just as for the case of initiating working set scan operations.

6.10.2 Time-Drniven Virtual Memory Subsystem Primitives

The TDYM Subsystem provides the following set of primitives, prnimarily for use by the
Arobject/Process Management (A/PM) Subsystem:
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val = VMPrePage(asid, vpa, nvp)

val = VMLock(asid. vpa, nvp)

val = VMUnlock(asid, vpa, nvp)

pid = VMPageFault(asid, vpa)

pid = VMSchedule()

val = VMFlush(asid, vpa. nvp)

val = VMSwap()

gpsid = VMFreeze(asid)

val = VMUntreeze(gpsid [, asid])

val = VMMove(asid, vpa, desired-vpa)

val = VMZero(asid, vpa, nvp)

val = VMDestroy(asid)

val = VMFree(asid, vpa)

val = VMStatus(statusbuffer [, asid))

val = VMRestart()
BOCLEAN val TRUE if the specified operation is completed successfuily; otherwise FALSE.
PID pid The process 1D of the process which is to be run at this time.
GPSID gpsid Global Page Set ID, which identifies the temporary page set containing the frozen

(swapped) address spixce descriptor information. it includes the 'C of the lcgical
disk containing the page set, the page set type (TEMPCRARY), and the unique 1D
of this page set within the lcgical disk.

ASID asid Address Space ID, which dentifies the address space to be operated upon. The
corresponding process |D can te easily obtained frcm an ASID, and ice versa.

VIRT-PAGE -ADORESS vpa, desired-vpa
A virtual page address within an address space.

INT nvp The number of wirtual pages involved in the operation.

VMSTATUSBUFFER ‘*statusbutfer
The buffer address for returning status information.

Dn Error. Error conditions are indicated by the use of special return values. The details
concerning the precise nature of an error condition are proviced in the Kernel
Error Block.
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The VAIPrePage primitive initiates the paging-in of the specified set of virtual pages (nvp pages,
beginning with page vpa), in address space asid. This is useful for setting up an itial working set of
pages for a newly created process, since otherwise there is no execution history to indicate what the
working set cught to be. The VMLock primitive is similar to VMPrePage in that it causes the specitied
set of virtual pages to be paged-in, if not already in primary memory. However, VMLock is
synchronous in the sense that it will not return until all of the specified pages are actually present in
primary memory. Furthermore, those pages will be "locked™ in primary memory, i.e. they will not be
considered etigible for removal from the address space's working set, regardless of how long it has
been since they were 'ast accessed. vMUniock will "unlock™ the specified set of virtual pages,
making them eligibie for removal from the working set, and allowing the corresponding physical page

frames to be subsequently reused.

vMPageFauit is the means by which the TDVM Subsystem is notified of page faults. It is assumed
that the specified virtual page (voa) 's indeed one of the ailocated pages of address space asi/d. and.
hence the page fault is truly due to accessing a valid page that isn't resident in primary memory
{rather than a protection or invalid address fault). VMPagefFault first checks to see if the missing page
is alreacdy present somewhere in primary memory. This would be the case if the page had been in
primary; memcry earlier, was "“freed” due to inactivity, but the associated page frame had not yet been
reusec. 't wouid aiso be the case if the page is shared and is already resident as part of another
process w~orking set. If the missing page is found in primary memory, the page fault is handled very
quickly. wnth no need to switch processes. In this case VMPageFauit will return the 1D (pid) of the
currert crocess. which is the one that encountered the page fault. Otherwise VMPageFault must
initiate a page-in operation. Since reading a page from a secondary memory page set can take tens
of miiliseconds (or even hundreds of milliseconds if paging-out is required before space is available
for the new page), a process switch is usually desireable when paging-in is required. In such cases,

VIAPagerauit mil return the ID of the process which should now run in place of the faulting process.

/MScrequie is intended to be the primary means by which the Arobject/Process Manuager
determines which process is to be running at the present time. VMSchedule calls the Schedule
function cf the Time-Drniven Scheduler, to obtain the ordered list of processes which are to be run
next. Frcm this list the TDYM Subsystem can determine which address space working sets will be
required in primary memaory in the near future, allowing it to inttiate any necessary paqge.in operations.
Felated to this, YMSc~edule 1s alco re=ponsible tor scanning the working set pages of the current
process. to see if any cf them have not heen accessed recently and can thus be removed from the
working set. This scanning operation s cnly inthated f the procecs has accumulated sufficient virtual

ICPUj ttme since its nur<ing set was st scanned. 217 keduie returns the 1D of the process which is




238

to run now. It guarantees that the address space for that process is the active one (see the

description of ASActivate in Section 6.2.3.5).

The VAMIFiush primitive ensures that the specified set of virtual pages from the given address space
are ail "‘clean”, i.e any primary memory images of these pages are paged out, if they have been
flagged as MODIFIED. VMFlush, like VMLack, is synchronous. It will not return until all of the
modified pages have been written out to their corresponding page sets. VMFiush is primarily intended
to support the FlushPermanent primitive of the Arobject/Process Manager (see Section
PRIVORBJSEC). Itis also used when "deactivating’’ arobjects, to ensure that all modifications have
been flushed out to the appropriate page sets before the address spaces are destroyed. Unless
directed to flush modified pages through VMFlush, the TDVM Subsystem will only initiate page-out
activity when primary memory begins to fill up, and some of the modified but not recently accessed

page frames have to be reused.

VMSwap provides a mechanism through which the Arobject/Process Manager can explicitly
request the TDVM Subsystem to ''swap out” one of the existing but currently idle address spaces.
Crdinarily, the TDVM Subsystem will only swap out an address space if the combined working sets of
‘ail of the existing address spaces overflow primary memory. In that case TOVM calls the Time-Criven
Scheduler’'s RequestSwaplist function, to obtain the ordered list of swappable processes. TOVM
seieéts the most appropriate candidate from this list.5TAll of the pages from the selected process’
working set are released, so that they can be paged-out and reused as required. TDVM then wnitas all
cf the relevant address space descriptor information (inctuding the list of working set pages) into a
temporary page set.’?The address space is then destroyed (using ASOestroy). which frees the
associated address space resources for use by others. This freeing of address space resgurces is the
primary reason for making VMSwap available to the Arobject/Process Manager. it provides a
mechanism for recovering from "‘space exhausted’’ problems when creating cr growing address

spaces.

YMFreeze 15 quite similar to VMSwap, except that it allows a specific acddress space (4uid) to be

selected for “swapping”. If that address space is already swappad out. the global page <et D (7p5:0)

GxThe ‘east “urgent’” process, for which the expected continuation time 's farthest n the future arg arich Raunt ineady
oeen swapged out, s selected. However, processes contaming locked address space NAges Ne Gl Sorsdersd cugpie for
swarging

52'! 'S not necessary 1Q record all of the address space information  Only the Private Reqion saqment tescrrior,. inn the
EXISTS/CCPIED flaqg tor each page in those segments nead be saved  fihis aas the st process from the g 0c ed arcteat
~hich was stll resident on this node and not yet swappcd out, then the Shared Fegaon Jroenboene o ooy thae

corresponding EXISTS Hays will also have o be saved.
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of the temporary page set containing the address space descriptor is returned. after first ensuring

that all MODIFIED pages from that address space have been flushed.%3t

the specified address space
is not currently swapped out, it is flushed and swapped (even if it contains locked pages), and the
gpsid of the temporary page set containing the address space descriptor is returned. VMFreeze
provides support for the Arobject/Process Management Subsystem's FreezeArobject and
FreezeProcess primitives (see Section APMSEC). It is also used when migrating processes from one

node to another.

Following a VMFreeze operation, the TDVM Subsystem removes all record of address space asid,
except for the page sets on secondary memory. The VMUnireeze primitive can be used to restore a
previously frozen address space (indicated by gpsid, the |1D of the page set containing the address
space descriptor), to the swapped state (see Figure 6-33). VMUnfreeze provides support for the
UnfreezeArobject and UnfreezeProcess primitives of the A/PM Suhsystem (see Section APMSEC).
Optionally, an address space can be given a new ID (asid) at the time it is unfrozen. This is useful
when migrating processes, since it allows the address space to be associated with a new process ID

on the new node.

Freeze

S;uatp SIwnap ( Frozen > Destroy \/: ( 0e1d >
Freez
Unfrecze “//7A
Swapped
< PP : Oestroy

Create Destroy
ﬁ Active W

Figure 6-33: Life Cycle of an Address Space

VMMove is the Arobject/Process Manager’s interface to the ASMove function, which changes the
location cf an existing segment in address space asid from vpa ta desired-vpa. This function must go
through the TDVM Subsystem, so that TDVM can update any references it may have to the affected

wirtual pages. See Section 6.2.3.5 for more detalls concerning the AStlove primitive.  VMZoro

63
“~“Nhen an address space s swupped. all ot i3 MOCIFIED pages are Haqgged for panmimq-out Lot oot e o
mmediatety. A frozen addrecs “nace on the other hand, 1s quaranteed ta ave been compietely Bushed
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provides an efficient mechanism far “‘zeroing’’ complete pages of an address space. It does this by
clearing the EXISTS flags for the specified virtual pages, so that the next time any of these pages are
accessed they will first be zero-filled. If the pages to be zeroed already exist on the corresponding
page set (the EXISTS flags were set), then VMZero will aiso caii the appropriate PSZerc or APSZero
primitive to zero {or free) the pages from the page set. One of the main purposes of the ViZero
primitive 1$ to provide effi_cient support for the ZeroFile primitive, which is provided by the File System

Client Interface {see Section 6.6).

YMCestroy and VMFree, like VMMove, are the A/PM Subsystem's interface to the corresponding
Address Space Management Primitives (ASDestroy and ASFree). VMDestroy completely destroys the
specified address space (asid), while VMFree deletes a segment (indicated by vpa) within address
space as'd. These functions must go through the TDVM Subsystem, so that TDVM can remove any
references it may have to the affected address space or segment, and free any corresponding primary
memory page frames. See Section 6.2.3.5 for more details concerning the ASDestroy and ASFree

primitives.

The vMStatus primitive is used to obtain general information concerning the current status cf the
TDVM Subsystem. This includes the number of active and swapped address spaces, the average size
of the address space working sets, the number of free pages available, and the total number of
page-in, page-out, and page-reclaim (avoided or fast page-in) operations. This information can be
used for menitoring the system's virtual memory activity, so that the TDVM Subsystem can be tuned to
provide better performance. If an optional address space ID (asid) is specified, then VMStatus will
return virtual memory information related to that particular address space. This includes its status

(SWAPPED or ACTIVE), working set size, and page-in, page-out, and page-reclaim statistics.

The /MRestart primitive is the initialization operation for the TDVM Subsystam (on a particular
ncde). 1t is assumed to be called automatically as the first TDVM operation, upon restarting
(rebocting) a failed node. Its sole purpose is to create the TDVM worker (kernei) processes, and
imtialize the virtual memory management data structures. These TDVM internai prccesses and data

structures are described in the following section.

6.10.3 Components of the Time-Driven Virtual Memory Subsystem

The TOYM Subsystem is implemented as a kernel arobject, with a separate instance on each node
ot the distributed computer system. Each instance is solely responsible for the management of the
primary memory page frames on its own node, and has no need to communicate or cooperals with

any of its peers on other nodes. Each instance of the TDVM Subsystem consists of three processes
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and five main data structures, as illustrated in Figure 6-34. The TDVM Manager process provides
aimost all of the subsystem’s functionality, and is the only process which can access and modify the
main data structures. The sole purpose of the Page-in Worker and Page-Out Worker processes is to
allow paging (page set read and write) operations to be performed asynchronously with other TDVM
Subsystem processing. The two worker processes are basically surrogates for the TDVM Manager.
They wait for page set operations to be completed on behalf of the TDVM Manager, allowing the

Manager to continue handling other virtual memory related operations.

Request
VM Reply
Operation Result
Warking Page-1In
VM Sets List
Manager List
Request Reply Request Reply Page-Out Reclaim
for Page-In for Page-Qut List List
Work Operation work Operation
Page-In Page-Out
Free
Wdorker worker
List

[\
Reques?t Request
Page Set Reply Page Set Reply
Jperation Result Qperation Result

Figure 6-34: Components of the Time Criven Virtual Memory Subsystem

The first main data structure indicated in Figure 6-34 is the Address Space Working Sets List. This
data structure is illustrated in more detail in Figure 6-35. The Address Space List contains an entry
tor every address space that is known to the TDVM Subsystem (whether it is currently active or
swapped out). Each entry indicates the current state of the address space (ACTIVE or SWAPPED). If
SWAPPED, the global page set ID (ypsid) of the temporary page set containing the address space's
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descriptor is provided. See the second entry in the Address Space List in Figure 6-35 for an example.
Otherwise the entry contains information concerning the address space’'s current working set of

virtual pages.

asid state time W WS vpa nvp tocy

asid state gpsid

asid | state| time W ws Pp———-—"-—"—1 vpa avp | leck

Ve W Ve VYV Ve Ve W N NN NN N AN N AN

Figure 6-35: Address Space Working Sets List

For ACTIVE address spaces, the "last scan time" (time) and working set window size (W) are
provided, in addition to the actual list of virtual pages which comprise the working set. The last scan
time is the virtual (CPU) time at which the address space was last scanned to determine which pages
belong to the working set (were accessed recently). The W parameter defines “‘recently’, by
specitying the virtual time frame during which a page must have been accessed, in order to be
considered a member of the current working set. The list of warking set pages is arranged in clusters,
where each cluster is indicated by a starting address (vpa) and its size (nvp). Due to the "locality of
references’, clustering of working set pages is expected to be quite common. Thus, this
representation of working sets will save space, and it will also improve the efficiency of page-in,
page-out, swap-in, and swap-out operations, since entire clusters can be read and written at a time.
Also associated with each ciuster is a lock flag, which indicates whether or not those pages are

locked in pritnary memory (as a result of a previous VMI.ock primitive).

The second main data structure of the TDVM Subsystem is the Page-In List. This list is actually
maintained as two separate lists, one for urgent page-in operations (those resulting from page fauits),
and another for the less urgent ‘pre-paging’’ operations (including the swapping in and expanding of
the working sets of address spaces which have increased in “‘urgency’’). The use of two lists ailows
the urgent page-in operations to be given precedence over pre-page operaticns. The two Page-In

Lists have identical structures, as illustrated in Figure 6-36.
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as1d | vpa nvp lock as1d vpa nvp 15ck

Figure 6-36: Page-in Lists

Each entry in a Page-in List indicates the address space (asid) and the virtual page (vpa) of a virtual

page that is to be paged-in. The corresponding page set and page number can then be determined

using the ASGetGPSID or ASGetSTE primitives (see Section 6.2.3.5). Each entry can also indicate a
range or cluster of nvp virtual pages, beginning with virtual page vpa. Normally, nvp = 1 for entries in
the Urgent List, since this will allow the corresponding process to continue executing as quickly as
poss:ble.esHowever, the clustering of page-in operations in the Pre-Page List will help improve the
overall paging throughput. Each entry in a Page-ln List also contains 2 fock flag, which indicates
whether that cluster of pages is to be locked into‘the corresponding address space’s working set,
after it has been paged-in.

Two cof the other main data structures of the TDVYM Subsystem are the Page-Out List and the
Reclaim List. These two structures are closely related in that they both contain information about
primary memory page frames which no longer belong to any address space’s working set. The only
difference between the two lists is that the pages in the Page-Out List have been modified, and hence
they must be written back to their corresponding page sets befare they can be reused. The Page-Out

cist and the Reclaim List each have the same logical structure, as illustrated in Figure 8-37.

Each entry in the Page-Out List or Reclaim List represents a cluster of npages physical page frames,
beginning with ppa. This cluster corresponds to the npages of page set gpsid, beginning with page
pnum.mThe Page-Qut List and Reclaim List together allow the TDVM Subsystem to quickly “reclaim”

pages which have not yet been reused, thus avoiding unnecessary page-in operations. Althcugh

66S<:nme experimentation is needed to determine in which circumstances, if any, it might be decireablie o perform clustercd
urgent page-in operations.

67Once anjain the clustering nff paqges, especially in the Page-Qut List, should help improve paging thioughput.
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Page-Qut List Reclaim t 1st
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Figure 6-37: Page-Qut and Reclaim Lists

conceptually they are simple lists (as illustrated in Figure 6-37), in practice the Page-Qut List and
Reclaim List would be sorted into binary search trees, using (gpsid, pnum) as the key. This would
make the searching for reclaimable pages, as well as the insertion of new pages into existing clusters
very fast. In addition, each entry in the Page-Qut List and Reclaim List would be threaded in FIFO
order on its respective ‘‘reuse queue’’. This ordering would allow the least recently used pages to be

selected for reuse, whenever the pool of free’” page frames was exhausted.

The final main data structure of the TDVM Subsystem is the Free Page Frame List, which is
illustrated in Figure 6-38. Each entry in the Free List has a very simple structure, and represents a
cluster of npages physical page frames, beginning with ppa. Each cluster is completely free to reuse,
since it does not correspond to any existing virtual address space pages. In practice, the Free List
would be sorted into a binary search tree, using ppa as the key. This would make the insertion of
newly freed page frames into existing clusters very fast. In addition, each entry would be threaded on
an appropriate list according to its cluster size (npages). There are 32 separate cluster size lists, one
for each power of two. This arrangement helps reduce primary memory “fragmentation’, allowing

page-in clusters of the appropriate size to be found very quickly.

ppa npages

AN

Figure 6-38: Free Page Frame List
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6.10.4 Interaction With Arobject/Process Manager and Time-Driven Scheduler

The TDVM Subsystem interacts extensively with bath the Arobject/Process Manager and the Time
Driven Scheduler, on the local node. Figure 6-39 illustrates the primary "‘uses’ relationships among
these subsystems. A/PM interacts with TDVM in two main ways, either directly through the
invocation of TDVM primitives, or indirectly through the manipulation of address spaces. Since most
address space manipulations are actually performed by TDVM, and TDVM must maintain consistency
between its own data structures and those of the Address Space Management Routines, A/PM is
quite restricted in terms of the address space operations it is allowed to perform. In particular, certain
operations (ASDestroy, ASFree, ASMove) must be invoked by A/PM via the corresponding TDVM
primitives, as noted earlier. However, address space creation (ASCreate) and growth (ASAllocate,
ASExpand) can both be handled directly by A/PM, since TDVM will learn about them automatically as

the new address space and pages are used.

Arobject/Process Management Subsystem

l

Time-Oriven
Virtual Memory

Subsystem
L gé/// \\\EJ /
Address Space Time-DOriven
Management Scheduler
Routines Subsystem

Figure 6-39: TDVM, A/PM, and TDS Subsystem !nteractions

Besides address space manipulations, the other majar area of A/PM and TDVM interaction is
process scheduling. The determination of which process is the best choice to be runniny on a node
at any given time is ultimately the responsibility of the Time-Driven Scheduler. However, TDS is not

aware of the status of the process address spaces (ACTIVE or SWAPPED), and thus it could select a
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nrocess which TDVM has not yet had time to swap back in.%81n order to coordinate properly between
TGVM and TDS on the choice of which process te run at the present time, A/PM must always use the
VMSchedule primitive, rather than directly invoke the TDS Schedule primitive. Figure 6-40 illustrates
the normal sequence of events which occur when A/PM must reschedule the processor, due to the

current process blocking or corﬁpleting.

A/PM
()

NDeschedule
(4) (9)
VvidSchedule pid

(7) ASActivate (5) Schedule ~

ASM TOVM 10S
———— W
(8) val (6) pid-list

Figure 6-40: Normal Processor Rescheduling Sequence

A/PM first invokes the TDS Deschedule primitive, and after it completes (returns val) A/PM enters
the "idle state”, waiting for a '‘Reschedule' signal to indicate that another process is ready to run.
When TDS has determined which process to run next, it sends the Reschedule signal {interrupt) to
A/PM.GGUpon receipt of the Reschedule signal, AP/M calls VMSchedule to determine exactly which
process is to be run next, and to switch to its asscciated address space. YMSchedule itself calls the
TDS Schedule primitive, to see which process the scheduler has selected. Assuming the selected
process is not swapped out, TDVM activates the process’ address space (by calling ASActivate), and

returns the 1D of the process (pid) to A/PM. A/PM then completes the switch ¢

O
T

it running.

it the process selected by the TDS Schedule primitive (the first process returned in pid-iist) is

currently swapped out, VAISchedule will initiate the swapping-in of that process, and select a different

68'ﬁ'lis shou!d seldom happen, but it can occur if all of the most urgent processes block n rapid succussion, watting for
vanous events. The best choice among the remaining ‘ready’” processes could then be one that i3 stil swapped nut, since
TDVM had not anticipated the necd to run it 50 soon  Another way this can happen s it a process which was blocked for along
time and got swapped out suddenly becomes ready to run again, and it 1s immediately selected as the most urgent process.

69" another process is aiready available and ready to run, there should be essenhally zero delay hetore TDS sends the
Reschedule signal.
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pid from pid-list. To be selected. a process must be the first one in pid-ust which is not currently
swapped out, awaiting completicn of a page-in operation, or put on "“hol/d” by TDS.”1f no appropriate
process can be found, VMSchedule returns BAD-PID to A/PM. This informs A/PM that it should

return to the idle state, rather than switch processes at this time.

In addition to rescheduling the processor when the current process blocks or completes,
preemptive rescheduling can aiso occur. Preemptive rescheduling due to an urgent process
unblocking works almost identically to the normal rescheduling sequence outlined above, and
ilustrated in Figure 6-40. The only difterence is that A/PM invokes the TDS SetScneduleinfo primitive
(rather than Deschedule), upon the occurrence of an event for which a process is waiting (biocked).
This informs TDS that the previously blocked process is now scheduiable, so that TDS can determine
when it should be run. In the meantime, A/PM can allow the process which was running at the time of
the event to continue executing. If TDS determines that the newly unblocked process should be run
immediately, it will send a Reschedule signal to A/PM. A/PM will then save the state of the current
process, and initiate the standard YMSchedule sequence discussed above. Similarly, if at any point
TDS wishes to preemptively reschedule the processor (because an urgent process has just
completed its delay, or there has been some other significant change in the value functions of

processes), it can do so by simply sending a Reschedule signal to A/PM.

Two other reasons for rescheduling the processor, of particular relevance to TDVM, are the
occurrencz of page faults and the completion of page-in and swap-in operations. The sequence of
events which occurs upon page fauit is illustrated in Figure 6-41. A process execution fault first
comes to the attention of A/PM. If it is a page fault, A/PM saves the state of the current process, and
invokes the VMPagefFault primitive of TDVM. If a fast page reclaim is possible, TDV! handles it
immeciately and returns the pid of the current process, so that A/PM can continue its execution.
Ctherwiise, TDVM initiates a page-in operation, and calls Schedule to determine which process should
be run while waiting for the page-in to complete. Note that since the faulting process has not been
Descheduied, it wil still appear in the pid-iist returned by Schedule, but it will be ineligible for
selection because it is awaiting completion of the page-in operation. If nc appropriate precess is
available, BAD-PID is returned to A/PM, indicating that the processor should remain idle at this time.
Otherwise, the address space of the selected process is activated, using ASAcuvate, and its pid i1s
returned to A/PM in order to set it running.

70
The hoig tags are returned along sth the pids i pig-ist. They indicate whuch proces. s e not to he run ot reent,
cither hecause they are Stll ‘sleeping’’, or becanuse there 1s 2 penatty for running them too soon




(1) Fault
————— > A/PM
(2) (7)
VMPageFauit pid
(5) ASActivate (3) Schedule
ASM TOVM T0S
— > — .
(6) val (4) pid-1ist

Figure 6-41: Page Fault Sequence

The sequence of events which occurs upon the completion of a page-in or swap-in operation is
illustrated in Figure 6-42. TDVM is notified of such an event through a new "Request for Work’ from
its Page-in Worker process (see Figure 6-34). In response to this, TDVM initiates the standard
(preemptive) rescheduling sequence (as discussed above), by sending a Reschedule signal to A/PM.
Note that the process for which the page-in or swap-in operation has just been completed should still
appear in the pid-list returned by Schedule, but now it will be eligible for selection as the process to

be run next.

h A/PM
(2)

Reschedule
(3) (8)
VMSchedutls pid

(6) ASActivate ~ (4) Schedule
T —— T —
ASM TOUM ™S
\____/,) W
(7) val (5) pid-tist
(1)
PageSet
Read
Completed

Figure 6-42: Page-In or Swap-In Completion Sequence
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6.11 System Monitoring and Debugging Subsystem

The system monitoring and debugging subsystem provides various abtlities to monitor and control
behavior of cooperating arobjects and processes during the execution time. The monitoring and
debugging manager exists on each node and has a special privilege to freeze or unfreeze an activity

of the arobject or process.

6.11.1 Monitoring and Debugging Management

The actual operations for the monitoring and debugging operations are performed in the
arobject/process or communication subsystems. For instance, Freeze, UnFreeze, Fetch, Store
operations on ar: arobject/process is performed at the arcbject/process manager. Heowever, Freeze
and UnFreeze operations for a specific node or for all applications are initiated at the monitoring and
debugging manager. Similarly, monitoring on the communication activity is supported by the

communication subsystem.

The following ArchOS primitives are supported for the monitoring and debugging management for a

client.
val = FreezeAllApplications()
val = UnfreezeAilAplicatons()
val = FreezeNode(node-id)
val = UnfreezeNode(node-id)
BQOLEAN val TRUE if the primitive was executed properly; otherwise FALSE.

NODE-ID node-id The node id indicates the actual node which will be stopped.

A FreezeAllApplications primitive stops the entire activities of cailer’'s application, and a Freezetinde
primitive halts all of the client’'s activities in a specific node. To resume client’s application,

UnfreezeAilApplications or UnfreezeNode will be used.

6.11.2 Monitoring/Debugging Protocol
When a system-wide Monitoring/D‘ebugging request such as FreezeAllApplications is issued, a
Monitoring/Debugging Manager's worker becomes a coordinator amonrg the other

Monitoring/Debugging Managers and propagates the request to the others.
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